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1. Introduction

In modern weather prediction, numerical simulations of atmospheric models play a

crucial role. However, even if the initial state is estimated with sufficient resolution,

the simulated state can be separated from the true state over time due to the chaotic

nature of the atmosphere. In other words, a small perturbation to the initial state

can grow exponentially fast along the deterministic time evolution [50, 66]. This gives

rise to the unpredictability of atmospheric motions over long-term periods. Therefore,

it is necessary to correct the simulated state using observation data from the true

state. This approach is known as data assimilation. See the comprehensive textbooks

[34, 50] for further motivations and issues of data assimilation from meteorology and

oceanography.

A simple way to correct the simulated state is to replace it with the observation

data. However, this approach is not feasible due to two reasons. First, the observations

have insufficient resolution to initialize the numerical simulation [28]. Thus, we must

reconstruct the high-resolution state from the low-resolution observation data. Second,

the observations always contain measurement noises. Therefore, we need to quantify

uncertainty in the state estimation from the noisy observations [80]. For these reasons,

the state estimation is often formulated as the Bayesian inverse problems [26, 76]. In

this approach, the estimated state is represented by a probability distribution. In

addition, the numerical model provides the prior distribution, and it is updated into

the posterior distribution using the Bayes’ formula with the observation data. See the

standard textbooks [63, 76, 78] for mathematical formulations of data assimilation as

the Bayesian inverse problems.

The Monte Carlo method is a fundamental approach to the Bayesian inverse prob-

lems [63, 76], which recovers the posterior distribution with infinitely many samples.

From the perspective of computational costs, it is impossible to evaluate the full poste-

rior distribution in a high-dimensional state space. One approach to avoid this issue is

estimating a maximizer of the probability distribution function of the posterior, known

as the maximum a posteriori (MAP) estimate or the variational method [63, 76]. An-

other approach is estimating the mean and covariance of the posterior distribution.

These two approaches are equivalent and correspond to the least squares method if

the evolution of the state and the observation operator are represented by linear maps,

and all noises follow the Gaussian distribution. The corresponding sequential data as-

similation algorithm is the Kalman filter (KF) [4, 24, 49]. However, for instance, the

motions of geophysical flows are usually modeled by nonlinear dynamics. Then, the

ensemble Kalman filter (EnKF) is proposed as a nonlinear extension of the KF [34],

which approximates the mean and covariance by a set of states known as an ensem-

ble. The EnKF is a hybrid approach between the Monte Carlo method and the least
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squares method, and it represents the uncertainty in the state estimation using a small

number of ensemble members. The EnKF is effectively applied to a wide range of

data assimilation problems for high-dimensional and nonlinear systems in geophysics

[20, 34, 50].

Two major implementations of the EnKF are known. The perturbed observation

(PO) method [19, 33] is a stochastic one, and the ensemble square root filter (ESRF)

[5, 14, 86] is a deterministic one. Theoretical studies have revealed some fundamental

properties common to the PO method and the ESRF [51, 58, 70, 88, 89], such as the

boundedness of the ensemble and the convergence to the KF in a large ensemble limit

for linear systems with the Gaussian noises. However, the error analyses have only been

established for the PO method [54], not for the ESRF method. Therefore, to advance

the theoretical analysis of the EnKF, an error analysis for the ESRF is necessary.

Another issue in the mathematical analysis of data assimilation is formulating the

model dynamics. The motions of geophysical flows are often modeled by dissipative

partial differential equations (PDE) such as the Navier-Stokes equations [23, 38], which

are defined on infinite-dimensional state spaces. Moreover, the chaotic nature of the

geophysical flows is an essential research subject in weather prediction. Therefore, we

consider dissipative dynamical systems on Hilbert spaces to incorporate such chaotic

properties into the model dynamics. The typical solution has a bounded trajectory and

exhibits chaotic behavior on a compact limit set, known as a global attractor. After

formulated in the infinite-dimensional space, the model dynamics is discretized in a

finite-dimensional space as mentioned in [27].

We have introduced two issues in the mathematical analysis of the EnKF above.

According to them, this thesis aims to discuss the following three topics. Firstly, we

review analytical results for the EnKF in various formulations of the model dynamics.

Secondly, we prove the error analysis of the ESRF applied to dissipative dynamical

systems. This is the main contribution of this thesis. Finally, we indicate future

directions for mathematical analysis of the EnKF, comparing the results among various

formulations.

The thesis is constructed as follows. Section 2 introduces some notations and recalls

from the theories of functional analysis, measures, Bayesian inference, and dynamical

systems on Hilbert spaces. In Section 3, we define data assimilation problems in vari-

ous formulations, classified by stochastic/deterministic, finite/infinite-dimensional, and

discrete/continuous-time systems. Section 4 reviews the sequential data assimilation

algorithms, the KF, and the variants of the EnKF. We then examine them from the

perspective of practical implementations. Section 5 provides the analysis of dissipative

dynamical systems and some examples appearing in geophysics. In Section 6, the math-

ematical analysis of the EnKF is explained, where we review the error analysis of the

PO method and other fundamental analyses of the EnKF. Section 7 explains the main

result of this thesis. We establish the error analysis of the ESRF for the dissipative
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dynamical systems. We also validate the analysis with a numerical example. Section 8

is a summary and discussion of future directions.
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2. Preliminary

2.1 Notations

We use uppercase letters, e.g., U , for random variables and lowercase letters, e.g., u,

for their realizations or deterministic variables. For n ∈ N, u ∈ Rn is assumed to be a

column vector. We use the notation ui for its i th element, and u∗ denotes the transpose

of u. We use bold letters, e.g., U or u, for a set of vectors.

2.2 Functional analysis

We recall some facts on the theory of functional analysis to handle the state estima-

tion problems on Hilbert spaces. For the details and proofs in this section, see the

introductory textbook [25].

2.2.1 Basic theory

Let H be a Hilbert space endowed with the inner product 〈 · , · 〉 and the associated

norm | · |. We use the same notations even when H is the Euclidean space. We assume

Hilbert spaces are separable. By L(H,G), we denote the space of bounded linear

operators from H to another Hilbert space G. Let IH denote the identity operator on

H. For A ∈ L(H) := L(H,H), |A|L represents the operator norm of A, Ran(A) denotes

the range of A, and A∗ is the adjoint of A. For u, v ∈ H, we define their product

u ⊗ v ∈ L(H) by u ⊗ v : H 3 w 7→ u 〈v, w〉 ∈ H, which is equivalent to uv∗ = u ⊗ v.

We call U ∈ L(H) unitary if U∗U = UU∗ = IH. Let Lsa(H) denote a set of self-adjoint

operators in L(H), i.e., A∗ = A for A ∈ Lsa(H). We define important concepts for

Lsa(H) as follows.

Definition 2.1. Let A ∈ Lsa(H).

(a) An operator A is said to be positive semi-definite, denoted by A � 0, if 〈u,Au〉 ≥ 0

for all u ∈ H.

(b) An operator A is said to be positive definite, denoted by A � 0, if there exists

c > 0 such that 〈u,Au〉 ≥ c|u|2 for all u ∈ H.

Remark 2.2. Definition 2.1 (b) is different from the conventional definition of the

positive definiteness. It is often said to be bounded from below, which implies that A is

invertible.

For a positive semi-definite A ∈ Lsa(H), a square root A
1
2 � 0 is uniquely well-

defined [25]. We thus define a weighted norm | · |A = |A−1/2 · | on H for A � 0. For

A,B ∈ Lsa(H), the order A � (resp. �)B means A − B � (resp. �) 0. We use the

following inequality to estimate operator norms.
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Lemma 2.3 ([25]). If A � B, then |A|L ≥ |B|L.

For a linear operator A : H → H, we denote the spectrum of A by

σ(A) = {λ ∈ C | (λI −A)−1 /∈ L(H)}.

and the resolvent set of A by

ρ(A) = C \ σ(A).

If A ∈ Lsa(H) then σ(A) ⊂ R. Moreover, if A � 0 then σ(A) ⊂ [0,∞). We also denote

the spectral radius of A by

r(A) = sup
λ∈σ(A)

|λ|.

In general, r(A) ≤ |A|L, i.e., |λ| ≤ |A|L for any λ ∈ σ(A). Thus, if |λ| > |A|L, then
λ ∈ ρ(A) by taking the contrapositive. The following fact is well known.

Proposition 2.4 ([25]). If A ∈ L(H) is normal, i.e., AA∗ = A∗A, then we have

r(A) = |A|L.

Note that if A is self-adjoint or unitary, then it is normal.

The spectrum of the product of two self-adjoint operators is estimated as follows.

Proposition 2.5 ([43]). Let A,B ∈ Lsa(H) and B � 0, then we have the following

relationships.

(1) σ(AB) = σ(BA) = σ(B
1
2AB

1
2 ).

(2) If A � 0, σ(AB) ⊂ [m(A)m(B),M(A)M(B)] where m(A) = inf σ(A),M(A) =

supσ(A).

The following lemma is useful to estimate the operator norm of the inverse operator

of A ∈ L(H).

Lemma 2.6. For A ∈ L(H), if σ0 = infλ∈σ(A) |λ| > 0, then A−1 ∈ L(H) and

|A−1|L ≤ 1

σ0
. (2.1)

To prove this, we prepare the following lemma.

Lemma 2.7. Let λ ∈ σ(A) for A ∈ L(H). Then,

|Av| ≥ |λ||v| (2.2)

for any v ∈ H.
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Proof. We prove it by contradiction. Suppose that there is v ∈ H such that

|Av| < |λ||v|. (2.3)

This implies |A|L < |λ|, hence λ ∈ ρ(A). This contradicts the assumption that λ ∈
σ(A), hence (2.3) is false. We thus have (2.2).

Proof of Lemma 2.6. From σ0 > 0, we have 0 ∈ ρ(A), hence A−1 ∈ L(H). Recall that

|A−1|L = sup|u|=1 |A−1u|. For u ∈ H with |u| = 1, we have from Lemma 2.7 that

1 = |u| = |AA−1u| ≥ σ0|A−1u|.

Therefore,

|A−1u| ≤ 1

σ0
,

which implies (2.1).

2.2.2 Compact operators

A linear operator K : H → G is said to be compact if for any bounded sequence

(un)n∈N ⊂ H, the sequence (Kun)n∈N ⊂ G contains a convergent subsequence. We

denote the space of compact operators by K(H,G) and K(H) = K(H,H). The following

fact is important when considering compact operators on infinite-dimensional spaces.

Proposition 2.8. Let dim(H) = ∞. If K ∈ K(H), then K−1 /∈ L(H).

From this proposition, if A,A−1 ∈ L(H), then A /∈ K(H). For instance, IH /∈
K(H). A self-adjoint and compact operator is unitarily diagonalizable, which yields

the spectral decomposition as follows.

Proposition 2.9 (Spectral theorem). Let K ∈ Lsa(H)∩K(H). Then, there exist eigen-

values (λn)n∈N ⊂ R and an orthonormal basis (ϕn)n∈N ⊂ H consisting of associated

eigenvectors such that

K =
∑
n∈N

λnϕn ⊗ ϕn.

Corollary 2.10. Let K ∈ K(H). Then, K∗K � 0 and K∗K ∈ Lsa(H) ∩ K(H).

Therefore, there exist (sn)n∈N ⊂ [0,∞) and an orthonormal basis (ϕn)n∈N ⊂ H such

that

K∗K =
∑
n∈N

s2n ϕn ⊗ ϕn.

Here, (sn)n∈N are called singular values of K.
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As an important subclass of compact operators, we introduce trace class operators.

Definition 2.11. For T ∈ K(H), it is said to be trace class if

Tr |T | :=
∑
n∈N

sn(T ) < ∞, (2.4)

where (sn(T ))n∈N are the singular values of T . We denote the set of trace class operators

by K1(H). Additionally, if T � 0, we define the trace of T by

TrT := Tr |T |.

This definition of the trace of an operator is consistent with that of a matrix. Then,

we have the following lemma.

Lemma 2.12 ([25]). For A ∈ L(H) and B ∈ K1(H), we have

Tr |AB| ≤ |A|LTr |B|.

Another important sub class of compact operators is the Hilbert-Schmidt class [25].

Definition 2.13. An operator A ∈ L(H) is called a Hilbert-Schmidt operator if |A|HS <

∞, where

|A|HS =

(∑
i∈N

|Aϕi|

) 1
2

with an orthonormal basis (ϕi)i∈N of H.

2.2.3 Perturbation theory of eigenvalue problems

In this thesis, we use the perturbation theory of eigenvalue problems of matrices.

Proposition 2.14 ([52, 77]). Suppose the matrix-valued function S(t) ∈ RN×N is

self-adjoint and continuously differentiable in an interval I of t. Then, there exist the

eigenvalues λn(t), n = 1, . . . , N of S(t) that are continuously differentiable on I.

The following lemma is used in the analysis of a filtering algorithm in Section 7.

Lemma 2.15 ([30, 32]). Suppose the same condition as Proposition 2.14, there exists

a unitary matrix valued function U(t) on I such that

d

dt
λn(t) =

[
U(t)∗

(
d

dt
S(t)

)
U(t)

]
nn

.

Note that U(t) is not differentiable in general [32].
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2.3 Calculations for linear operators

2.3.1 Ensemble of vectors

For m ∈ N, a set of state vectors v(k) ∈ H for k = 1, . . . ,m is called an ensemble, and

m is called the ensemble size. We use the notation V = [v(k)]mk=1 ∈ Hm to denote the

ensemble. If H = Rl for l ∈ N, V is equivalent to a matrix in Rl×m. For ensembles

U = [u(k)]mk=1 and V = [v(k)]mk=1 ∈ Hm, the ℓ2-norm |U |2 is defined by

|U |2 =

(
1

m

m∑
k=1

|u(k)|2
) 1

2

, (2.5)

and the products UV ∗ ∈ L(U) and U∗V ∈ Rm×m are given as

UV ∗ =
m∑
k=1

u(k) ⊗ v(k), U∗V =
[〈

u(i), v(j)
〉]m

i,j=1
.

When we write an ensemble consisting of the same vector u ∈ H as u1 = [u, . . . , u] ∈
Hm with 1 = (1, . . . , 1) ∈ (Rm)∗, it holds that |u1|22 = |u|2. Moreover, for x ∈ Rm,

T ∈ Rm×m, and A ∈ L(H), we define

Ux =

m∑
k=1

xku(k) ∈ H,

u+U = u1+U = [u+ u(k)]mk=1 ∈ Hm,

UT =

[
m∑
l=1

u(l)Tl,k

]m
k=1

∈ Hm,

AU =
[
Au(k)

]m
k=1

∈ Hm.

For an ensemble V = [v(k)]mk=1 ∈ Hm, v = 1
m

∑m
k=1 v

(k) is called the ensemble mean

and dV = [v(k) − v]mk=1 ∈ Hm is called the ensemble perturbation. The ensemble V is

then decomposed into the mean and the perturbation, V = v1+ dV . The (unbiased)

ensemble covariance Covm(V ) ∈ Lsa(H) is defined by

Covm(V ) =
1

m− 1
dV dV ∗.

It is easy to see Covm(V ) = Covm(dV ) and Covm(V ) � 0.

The following lemma shows a fundamental property of the ensemble perturbation.

Lemma 2.16. For any ensemble perturbation dV of V ∈ Hm, we have

dV 1∗ = 0 ∈ H. (2.6)
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Proof. The equality (2.6) is obtained from the definition of the ensemble mean.

dV 1∗ =

m∑
k=1

(v(k) − v) · 1 = m

(
1

m

m∑
k=1

v(k) − 1

m

m∑
k=1

v

)
= m(v − v) = 0.

We also have the following lemma providing equivalent representations of the ℓ2-

norm (2.5) of an ensemble V ∈ Hm.

Lemma 2.17. The ℓ2-norm for V ∈ Hm satisfies

|V |22 =
1

m
TrV ∗V =

1

m
TrV V ∗ = |v|2 + |dV |22. (2.7)

Proof. The first equality is derived from the definition of |V |2.

|V |22 =
1

m

m∑
k=1

|v(k)|2 = 1

m

m∑
k=1

〈
v(k), v(k)

〉
=

1

m
TrV ∗V .

Let (ϕi)i∈N be a complete orthonormal basis of H, we have

|V |22 =
1

m

m∑
k=1

|v(k)|2 = 1

m

m∑
k=1

∑
i∈N

〈
v(k), ϕi

〉2
=

1

m

∑
i∈N

m∑
k=1

〈
v(k), ϕi

〉2
=

1

m

∑
i∈N

m∑
k=1

〈
ϕi, (v

(k) ⊗ v(k))ϕi

〉
=

1

m
TrV V ∗.

Owing to the relation dV 1∗ = 0 in Lemma 2.16, we have V V ∗ = v11∗v∗ + dV dV ∗ =

mv v∗ + dV dV ∗. Hence, we obtain 1
m TrV V ∗ = |v|2 + |dV |22.

2.3.2 Inverse of operators

We use the following technical lemmas to calculate the inverse of an operator. See

[44, 75] for other identities.

Lemma 2.18 (Woodbury identity [39, 80]). Let H1,H2 be Hilbert spaces and A : H1 →
H1, B : H1 → H2, C : H2 → H2, and D : H2 → H1 be linear operators. If A, C, and

A+BCD are invertible, then

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1. (2.8)

Here, we denote the identity operator by I = IH. Then, we show the following

lemmas.

Lemma 2.19. Let A ∈ L(H). If I +A is invertible, then we have

(I +A)−1 = I − (I +A)−1A. (2.9)

Moreover, if A ∈ Lsa(H) and A � 0, then

0 � A(A+ I)−1 = (A+ I)−1A � I, 0 � (A+ I)−1 � I. (2.10)
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Proof. The equality (2.9) is easily confirmed by

LHS = (I +A)−1(I +A−A) = I − (I +A)−1A.

For (2.10), the equality (2.9) yields A(A+ I)−1 = (A+ I)−1A. The inequalities follow

from the spectral mapping theorem [25].

Lemma 2.20. Let Γ : H → H be invertible and V ∈ Hm. Then, the operator V V ∗+Γ

is invertible, and

(I + V ∗Γ−1V )−1V ∗Γ−1 = V ∗(V V ∗ + Γ)−1. (2.11)

Furthermore,

(I + V ∗Γ−1V )−1 = I − V ∗(V V ∗ + Γ)−1V. (2.12)

Proof. The operator V V ∗ + Γ is invertible owing to V V ∗ � 0 and Γ � 0. Then, we

have

V ∗Γ−1(V V ∗ + Γ) = V ∗Γ−1V V ∗ + V ∗ = (I + V ∗Γ−1V )V ∗,

which is equivalent to (2.11). For (2.12), using (2.11), we get

(I + V ∗Γ−1V )−1V ∗Γ−1V = V ∗(V V ∗ + Γ)−1V.

Therefore,

I − V ∗(V V ∗ + Γ)−1V = I − (I + V ∗Γ−1V )−1V ∗Γ−1V = (I + V ∗Γ−1V )−1,

where the last equality follows from (2.9).

Lemma 2.21. Let A ∈ L(H) be invertible. If U ∈ L(H) be unitary, then

UA−1U∗ = (UAU∗)−1,

and for diagonal Σ � 0, we have

ΣA−1Σ = (Σ−1AΣ−1)−1.

Proof. Owing to U−1 = U∗ and Σ is invertible, both of the equalities follow from the

fact that (AB)−1 = B−1A−1 for invertible A,B ∈ L(H).

14



2.4 Probability theory

We need probability theory to quantify uncertainties emerged in the state estimation

problems. Let (Ω,F ,P) be a probability space consisting of a sample space Ω, a σ-

algebra F , and a probability measure P. By E[ · ], we express the expectation with

respect to this probability space. For a family of subsets E ⊂ 2Ω, we denote the smallest

σ-algebra containing E by σ(E). Let (H,B(H)) be a measurable space for a Hilbert

space H and its Borel σ-algebra B(H) = σ({O ⊂ H | O : open}), and M1(H) denote

the set of probability measures on this space. For a Banach space X , a measurable

function f : H → X and µ ∈ M1(H), we denote Eµ[f ] =
∫
H f(u) dµ(u) in the meaning

of the Pettis integral [3, 80]. For µ ∈ M1(H), the mean of µ is defined by

ϖµ = Eµ[x] =

∫
H
x dµ(x) ∈ H,

and the covariance of µ is defined by

Cµ =

∫
H
(x−ϖµ)⊗ (x−ϖµ) dµ(x) ∈ Lsa(H).

A random variable U is a measurable map U : (Ω,F ,P) → (H,B(H)). It induces the

push-forward measure PU = U∗P ∈ M1(H) called the image measure of U and the

σ-algebra associated with U defined by σ(U) = σ({U−1(E) | E ∈ B(H)}). Similarly,

the mean and the covariance of U are given by

ϖU = E[U ] =

∫
H
u dPU (u) =

∫
Ω
U(ω) dP(ω), CU = E[(U −ϖU )⊗ (U −ϖU )].

In addition, for a sub-σ-algebra G ⊂ F , the conditional expectation of U with respect

to G is denoted by E[U |G ].

Let a time index set T = N∪{0} or [0,∞) ⊂ R and a stochastic process U : T ×Ω →
H. A family of sub-σ-algebras (Ft)t∈T is called a filtration if s ≤ t ⇒ Fs ⊂ Ft. The

filtration associated with the stochastic process U is defined by FU
t = σ({U−1

s (E) ⊂
Ω | E ⊂ B(H), s ≤ t, s ∈ T }) for t ∈ T . The expectation conditioned on U0 = u ∈ H
is denoted by Eu[f(Ut)] = E[f(Ut) |U0 = u] for t ∈ T and an integrable function

f : H → R.
Let µ, ν be measures on a measurable space (X ,F ). If ν(E) = 0 for any E ∈ F

with µ(E) = 0, then ν is said to be absolutely continuous with respect to µ, denoted by

ν � µ. A measure space (X ,F , µ) is called σ-finite if X can be written by a countable

union of elements of F with each of µ-finite measure.

Proposition 2.22 (Radon-Nikodým’s theorem [80]). Suppose that µ and ν are σ-

finite measures on a measurable space (X ,F ) and that ν � µ. Then, there exists a

measurable function ρ : X → [0,∞] such that, for all measurable function f : X → R
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and all E ∈ F , ∫
E
fdν =

∫
E
fρ dµ,

whenever either integral exists. Furthermore, any two functions ρ with this property

are equal µ-almost everywhere.

The measurable function ρ in Proposition 2.22 is called the Radon-Nikodým deriva-

tive, often denoted by ρ = dν
dµ . The Radon-Nikocým derivative plays an important role

in the Bayesian inference, which is explained later.

Let us consider a finite dimensional case. For l ∈ N, if µ ∈ M1(Rl) is absolutely

continuous with respect to the Lebesgue measure on Rl, the Radon-Nikodým derivative

is called the probability density function (PDF), and we denote it by pµ. Similarly, for

a random variable U , the PDF of PU is denoted by pU . The Gaussian measure on Rl

is defined by its PDF.

Definition 2.23 (Gaussian measure on Rl). Let ϖ ∈ Rl and C ∈ Lsa(Rl) with C � 0.

The Gaussian measure with mean ϖ and covariance C is defined by its PDF as

p(x) =
1√

detC(2π)l
exp

(
−1

2
|x−ϖ|2C

)
, (2.13)

and it is denoted by N (ϖ,C) ∈ M1(Rl).

We can introduce the following metrics between probability measures on (H,B(H)),

see [37] for other metrics and relationships among them.

Definition 2.24 ([80]). Let µ, ν ∈ M1(H). The total variation distance is defined by

dTV (µ, ν) = sup {|µ(A)− ν(A)| | A ∈ B(H)} .

The Hellinger distance is given by

dH(µ, ν) =

∫
H

∣∣∣∣∣
√

dµ

dρ
−

√
dν

dρ

∣∣∣∣∣
2

dρ

 1
2

,

independent to a reference measure ρ ∈ M1(H).

The following inequalities are useful in estimating the differences between measures

or moments.

Proposition 2.25 ([37, 80]). For µ, ν ∈ M1(H),

dH(µ, ν)2 ≤ dTV (µ, ν) ≤ 2dH(µ, ν).
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Proposition 2.26 ([80]). Let µ, ν ∈ M1(H), X be a Banach space with a norm ‖ · ‖,
and f : H → X be a measurable function. Suppose that Eµ[‖f‖2] and Eν [‖f‖2] < ∞.

Then, we have

‖Eµ[f ]− Eν [f ]‖ ≤ 2
√
Eµ[‖f‖2] + Eν [‖f‖2]dH(µ, ν).

We finally review important facts about measures on infinite-dimensional Hilbert

spaces. For more details, see Chapter 2 of [80] and references therein.

Proposition 2.27 (Lebesgue measures on Hilbert spaces [80]). Suppose that a measure

µ on an infinite-dimensional Hilbert space H is invariant under all translations, and is

locally finite, i.e., for any u ∈ H, there exists a measurable Ou such that u ∈ Ou and

µ(Ou) < ∞. Then, µ is the zero measure.

From this proposition, we cannot define the Lebesgue measure on H. However, the

Gaussian measure on H is well-defined.

Definition 2.28 (Gaussian measure on H). A measure µ on (H,B(H)) is said to be

a Gaussian measure if the push-forward measure ℓ∗µ is a (non-degenerate) Gaussian

measure on R for any continuous linear functional ℓ : H → R.

Proposition 2.29 (Sazanov’s theorem [80]). Let µ be a Gaussian measure on H with

mean zero. Then, its covariance Cµ ∈ K1(H) and

TrCµ =

∫
H
|x|2 dµ(x).

Conversely, if C ∈ Lsa ∩ K1(H) with 〈Cx, x〉 > 0 for any x ∈ H, then there exists a

Gaussian measure µ on H with covariance Cµ = C.

Proposition 2.29 implies that the covariance of a Gaussian measure should be trace

class. We denote µ = N (0, C) in Proposition 2.29. Moreover, for the shifted Gaussian

random variable Xϖ = ϖ + X0 with ϖ ∈ H and X0 ∼ N (0, C), we denote PXϖ =

N (ϖ,C). We also use the same notation for a degenerate Gaussian measure for the

covariance C � 0.

2.5 Bayesian inference

Bayesian inference provides a mathematical framework, to estimate a state u from

a noisy observation y and to quantify its uncertainty based on Bayes’ theorem. See

[26, 79] for more details about the concepts and formulations in infinite-dimensional

spaces.
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2.5.1 Bayes’ theorem

We first introduce Bayes’ theorem in the Euclidean spaces H = RNu and Y = RNy .

We assume that we know the conditional PDF pY (y |u). For instance, if the noisy

observation y is generated by y ∼ N (u,R) for R ∈ Lsa(RNy) with R � 0, we have the

PDF pY (y |u) as (2.13).

Proposition 2.30 (Bayes’ theorem [63, 76]). For an observation y ∈ RNy , the condi-

tional PDF of U is given by Bayes’ formula,

pU |Y (u | y) =
pY (y |u)pU (u)

pY (y)
, (2.14)

where pU (u) is the PDF of U and pY (y) =
∫
RNy pY (y |u)pU (u) du.

In the context of Bayesian inference, pU (u) and pU |Y (u | y) are called by the prior and

posterior distributions (densities), respectively. The prior distribution pU (u) represents

the uncertainty in the initial estimate of the state u. For given observation y, the prior

distribution pU (u) is updated into the posterior distribution pU (u | y) by multiplying

the likelihood pY (y |u) as in Proposition 2.30.

pU (u) → pU |Y (u | y) ∝ pY (y |u)pU (u).

The posterior distribution pU |Y (y |u) reflects the uncertainty in the estimate of u after

incorporating the information from observation y into the prior knowledge. Figure 1

illustrates Bayes’ formula for one-dimensional state and observation space.

PriorLikelihood

Posterior

Figure 1: Bayes’ formula.

The following lemma provides the explicit formula for the Gaussian posterior dis-

tribution.

Lemma 2.31 (Gaussian conditioning [80]). Let (U, Y ) ∼ N (ϖ,C) be a joint Gaussian

distribution on RNu×Ny with the mean

ϖ =

[
ϖ1

ϖ2

]
∈ RNu+Ny
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and the covariance

C =

[
C11 C12

C∗
12 C22

]
� 0

in block form. The conditional distribution of U provided Y = y is the Gaussian

distribution given by

PU ( · |Y = y) ∼ N (ϖ1 + C12C
−1
22 (y −ϖ2), C11 − C12C

−1
22 C∗

12).

The Gaussian conditioning is essential in developing the approximated Gaussian

algorithms in data assimilation.

Since the Lebesgue measure does not exist on infinite-dimensional Hilbert spaces

according to Proposition 2.27, we cannot consider density functions with respect to it.

We thus generalize (2.14) in terms of the Radon-Nikodým derivative of the posterior

distribution with respect to the prior distribution. If dim(Y) < ∞, we can define the

posterior distribution as follows.

Proposition 2.32 (Generalized Bayes’ formula [26, 29, 80]). Let Y = RNy , h : H → Y
be continuous, and µ ∈ M1(Y) with its PDF pµ be the distribution of observation

noises, then the posterior distribution µy(du) = P(du | y) is absolutely continuous with

respect to the prior distribution µ0 ∈ M1(H) and its Radon-Nikodým derivative is given

by

dµy

dµ0
(u) ∝ exp (−Φ(u; y)) , (2.15)

where Φ(u; y) = − log(pµ(y − h(u))).

2.5.2 Well-posedness of the posterior distribution

The Bayesian inverse problem provides a continuous posterior distribution with respect

to the observation data. This is known as the well-posedness of the posterior distribu-

tion. Let H and Y be two Hilbert spaces with norms | · |H and | · |Y respectively. Here,

we define the posterior by a potential function and impose assumptions on it.

Assumption 2.33. Let Φ( · ; · ) : H× Y → R.

(1) For any ϵ, r > 0, there exists M = M(ϵ, r) ∈ R such that

Φ(u; y) ≥ M − ϵ|u|2H, u ∈ H, |y|Y < r.

(2) For any r > 0, there exists K = K(r) > 0 such that

Φ(u; y) ≤ K, |u|H, |y|Y < r.
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(3) For any r > 0, there exists L = L(r) > 0 such that

|Φ(u1; y)− Φ(u2; y)| ≤ L|u1 − u2|H, |u1|H, |u2|H, |y|Y < r.

(4) For any ϵ, r > 0, there exists C = C(ϵ, r) > 0 such that

|Φ(u; y1)− Φ(u; y2)| ≤ exp(ϵ|u|2H + C)|y1 − y2|Y , |u|H, |y1|Y , |y2|Y < r.

Example 2.34. For Y = RNy , H ∈ L(H,Y), and R ∈ RNy×Ny with R � 0, we

consider a potential function

Φ(u; y) = |y −Hu|2R.

Then, Φ(u; y) satisfies Assumption 2.33. This example is introduced from a Gaussian

likelihood. See Chapter 6 of [80] for more general examples.

Proposition 2.35 (Well-posedness of the Bayesian inverse problem [26, 80]). Suppose

that Φ satisfies Assumption 2.33 and µ0 is a Gaussian distribution on H. Then, for

any y ∈ Y, the posterior distribution,

dµy

dµ0
= Z(y)−1 exp(−Φ(u; y)), Z(y) =

∫
H
exp(−Φ(u; y)) dµ0(u),

is well-defined. Furthermore, for any r > 0, there exists C = C(r) > 0 such that

dH(µy1 , µy2) ≤ C(r)|y1 − y2|Y , |y1|Y , |y2|Y ≤ r.

We note that the condition (1) and (2) in Assumption 2.33 implies the finiteness and

positivity of the normalizing constant Z(y) in Proposition 2.35, respectively. Propo-

sition 2.35 implies the local Lipschitz continuity of the posterior distribution with re-

spect to the observation data. In other words, the Bayesian inverse problem provides a

robust estimation of the state from uncertain data. From Proposition 2.26 and Propo-

sition 2.35, we have the following corollary.

Corollary 2.36. Let X be a Banach space with a norm ‖·‖X and f : H → X . Suppose

that Eµ0 [‖f‖2X ] < ∞, then for any r > 0, there exists C = C(r) such that

‖Eµy1 [f ]− Eµy2 [f ]‖X ≤ C|y1 − y2|Y , |y1|Y , |y2|Y ≤ r.

By taking X = H, ‖ · ‖X = | · |, and f(u) = u in Corollary 2.36, the mean of the

posterior distribution is continuous with respect to y. On the other hand, the mode of

the posterior distribution is not continuous with respect to y in general [63].
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2.6 Dynamical systems

We use the theory of dynamical systems to describe mathematical models in data

assimilation. In particular, it is essential to consider partial differential equations (PDE)

as infinite-dimensional dynamical systems [59, 85]. See also the comprehensive textbook

of the theory for finite-dimensional dynamical systems [53]. Let H be a Hilbert space.

A dynamical system is defined by a semigroup on H.

Definition 2.37 (Semigroup). A semigroup on H is a continuous family {Ψt | t ≥ 0}
of mappings from H to itself satisfying

(1) Ψ0 = idH;

(2) Ψt+s = Ψt ◦Ψs for all t, s ≥ 0;

(3) Ψt(u0) is continuous with respect to t and u0.

A semigroup is often generated by an ordinal differential equation (ODE) or a PDE.

For example, let u(t, x) be the solution to a PDE with an initial condition u(0, x) =

u0(x) for u0 ∈ H. If u(t, · ) ∈ H, we can define Ψt : H → H by

Ψt(u0)( · ) = u(t, · ).

Hence, in principle, we assume the well-posedness (i.e., the existence and the uniqueness

of the solution and its continuous dependence on the initial condition) of the model

equation so that the solution generates a semigroup. For ODEs, there is a sufficient

condition for the existence of a semigroup.

Proposition 2.38 (Picard-Lindelöf [59]). Let F : RNu → RNu be a locally Lipschitz,

i.e., for any r > 0, there exists L = L(r) > 0 such that

|F(u)−F(v)| ≤ L|u− v|

for all |u|, |v| ≤ r. Then, there exists a unique solution to the ODE

du

dt
= F(u), u(0) = u0 ∈ RNu ,

on a time interval [0, T ) with T = T (u0) > 0.

The following concepts are fundamental for characterizing the long-term behavior

of dynamical systems.

Definition 2.39. Let Ψt be a dynamical system on H.

(1) For X ⊂ H, we call X is invariant if Ψt(X) = X for all t ≥ 0.
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(2) For X,B ⊂ H, we call X attracts B if

dist(Ψt(B), X) → 0 (t → ∞),

where dist(A,B) = supa∈A infb∈B |a − b|. Moreover, we call X is attracting if it

attracts all bounded subset B ⊂ H.

(3) For A ⊂ H, we call A a global attractor if it is compact, invariant, and attracting.

A global attractor satisfies the following properties.

Proposition 2.40 ([59]). Let Ψt be a dynamical system on H.

(1) A global attractor A of Ψt is unique.

(2) The global attractor A is the maximal compact invariant set and the minimal

attracting set.

(3) There exists a global attractor A if and only if there exists a compact attracting

set.

Instead of the existence of an attracting set, we can show stronger results in many

applications.

Definition 2.41 (Absorbing set). For X ⊂ H, we call X is absorbing if for any

bounded subset B ⊂ H, there exists T = T (B) ≥ 0 such that

Ψt(B) ⊂ X

for all t ≥ T .

Remark 2.42. From Proposition 2.40, the existence of a compact absorbing set implies

the existence of a global attractor.

The following inequality, known as the kinetic energy principle, is useful to show

the existence of an absorbing set, i.e., there exists λ,K > 0 such that

d

dt
|Ψt(u0)|2 ≤ −λ|u0|2 +K (2.16)

for t ≥ 0 and u0 ∈ H. As a result of the Gronwall lemma, this implies

|Ψt(u0)|2 ≤ e−λt|u0|2 +
K

λ
(1− e−λt). (2.17)

This is an essential property of dissipative dynamical systems. In general, (2.16) is

considered to be the existence of a Lyapunov function E( · ) = | · |2 satisfying

d

dt
E(ut) ≤ −λE(ut) +K (2.18)

for λ,K > 0.

We can also consider these concepts in discrete-time dynamical systems [88]. In

Section 5, we discuss the existence of the global attractor and other properties for

dissipative dynamical systems with important examples appearing in geophysics.
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3. State space model and data assimila-

tion problems

3.1 Finite dimensional problems

3.1.1 State space model

Let us consider the finite-dimensional state space H = RNu and the observation space

Y = RNy for Nu ≥ Ny. We suppose that the time evolution of the true state is modeled

by a discrete-time stochastic process U : N× Ω → RNu satisfying

Un = Ψ(Un−1) + ξn (3.1)

with an uncertain initial state U0 ∈ RNu , where Ψ : RNu → RNu is a continuous map.

The sequence (ξn)n∈N ⊂ RNu is an i.i.d. stochastic error, which represents modelling

and approximation errors. Its mean is zero, and the covariance matrix is represented

by a matrix Q ∈ RNu×Nu with Q � 0. The information from the unknown true state

is obtained by noisy observations Y : N× Ω → RNy ,

Yn = h(Un) + ηn, n ∈ N, (3.2)

where h : RNu → RNy is a continuous observation function and (ηn)n∈N ⊂ RNy is an

i.i.d. noise sequence with a probability density function (PDF) pY . The following as-

sumption is imposed on the observation noise to formulate data assimilation algorithms

in Section 4.

Assumption 3.1. For any n ∈ N, ηn ∼ N (0, R) with R ∈ RNy×Ny , R � 0.

Moreover, the full observation is considered when analyzing data assimilation algo-

rithms in an ideal setting.

Assumption 3.2 (Full observation). The state is fully observed, i.e., h = idH and

R = r2IH for r > 0. If the observation function is a linear operator H ∈ L(H,Y), i.e.,

h(u) = Hu, we suppose that H = IH.

We also define a finite-dimensional state space model with continuous time, which

is convenient for mathematical analysis. In addition, we can consider the following

stochastic differential equation (SDE) for a stochastic process U : [0,∞)× Ω → RNu ,

dUt = F(Ut)dt+Q
1
2dWt, (3.3)

where F : RNu → RNu is continuous, W = (Wt)t≥0 is the Nu-dimensional Wiener

process, and Q ∈ RNu×Nu with Q � 0. For SDEs, see the basic textbook [73], in which
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we find the existence and the uniqueness theorem of the solution. In a similar manner,

we adopt a continuous-time stochastic observation,

dYt = h(Ut)dt+R
1
2dBt, (3.4)

where h : RNu → RNy is continuous, and (Bt)t≥0 is the Ny-dimensional Wiener process

independent of W , and R ∈ RNy×Ny with R � 0. We consider the following assumption

corresponding to Assumption 3.1.

Assumption 3.3. The covariance of observation noises is positive definite R � 0.

3.1.2 Bayesian data assimilation problems

Let T = N∪{0} or [0,∞) ⊂ R be a time index set. Stochastic processes U : T ×Ω → H
and Y : T ×Ω → Y denote a true state and an observation, respectively. We write the

observation up to time t as Yt = {Ys | 0 ≤ s ≤ t}. We first formulate a state (signal)

estimation problem, minimizing the L2-error from the true state using the observations.

Definition 3.4. For t ∈ T , a random variable Vt : Ω → H is called an estimator based

on the observations Yt if Vt is F Y
t -measurable. Furthermore, it is said to be optimal if

E[|Ut − Vt|2] = inf{E[|Ut − V |2] | V ∈ Kt},

where Kt = {V : Ω → H | V ∈ L2(Ω,P) is an estimator based on Yt}. Here, L2(Ω,P)
is the space of square integrable functions with respect to P on Ω. The state estimation

problem is to construct or approximate the optimal estimator Vt based on the observa-

tions Yt.

The following proposition implies that the optimal estimator is obtained by the

conditional expectation.

Proposition 3.5 (Optimal estimation [73]). An optimal estimator Vt of the state es-

timation problem is given by Vt = E[Ut |F Y
t ].

We then consider a Bayesian formulation of the state estimation problem, in which

the estimation is represented by the conditional distribution. Here, we consider the

discrete-time system. Let yN = {yn | 0 ≤ n ≤ N} denote the realizations of observa-

tions in a discrete-time interval 0 ≤ n ≤ N for N ∈ N.

Definition 3.6 (Data assimilation problem). Let U be the unknown true state and yN

be the given observations up to N ∈ N. For n ∈ N, we consider a problem constructing a

random variable Vn such that its probability distribution corresponds to the conditional

probability distribution of Un with respect to yN , PVn = PUn( · | yN ). It is called a data

assimilation problem. Data assimilation problems are classified into the following three

types depending on n and N .
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• Prediction if n > N ;

• Filtering if n = N ;

• Smoothing if n < N .

Since the prediction distribution PUn( · | yN ) (n > N) is obtained as the push-

forward of the filtering distribution by the model dynamics, it is sufficient to deal with

the filtering and smoothing problems. In Definition 3.6, the distributions are obtained

as the posterior distributions using Bayes’ formula in Proposition 2.30.

In many real-world applications, observations are often obtained at every discrete

time step. In the discrete-time filtering problem, a successive update of the distribution

PVn is useful. We assume that the model noise ξn has a probability density function

pξ. If the model is deterministic, i.e., the covariance of the noise sequence (ξn)n∈N in

(3.1) is O, Dirac’s delta function is used instead of pξ.

Definition 3.7 (Sequential data assimilation for a finite-dimensional state space).

Suppose U and Y are governed by (3.1) and (3.2) respectively. Let a PDF pU0 represent

the initial uncertainty of U0. The following successive update yields the exact filtering

distribution pVn = pUn( · | yn) for n ∈ N, starting with pV0 = pU0.

(I) (Prediction: pVn−1 → p
V̂n
) Propagate pVn−1 to p

V̂n
using the model dynamics.

p
V̂n
(v) =

∫
RNu

pξ(v −Ψ(v′))pVn−1(v
′) dv′. (3.5)

(II) (Analysis: p
V̂n
, yn → pVn) Update p

V̂n
to pVn using Bayes’ formula:

pVn(v) =
pY (yn | v)pV̂n

(v)∫
RNu pY (yn | v′)pV̂n

(v′) dv′
, (3.6)

where pY (y |u) is the conditional PDF of Y with respect to u ∈ RNu.

The step (I) is known as the prediction (or forecast) step and PV̂n(dv) = p
V̂n
(v) dv

is called the prediction (or forecast) distribution. Similarly, the step (II) is known as

the analysis (or update) step, and PVn(dv) = pVn(v) dv is referred to as the analysis (or

filtering) distribution. In [63], the two steps (I) and (II) of Definition 3.7 are represented

by operator forms on M1(RNu).

PV̂n = PPVn−1 , PVn = LynPV̂n ,

where P : M1(RNu) → M1(RNu) and Lyn : M1(RNu) → M1(RNu) are a Markov tran-

sition operator associated with (3.1) and represent Bayes’ update using the observation

yn, respectively.
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We need to construct numerical algorithms to approximate the exact filtering distri-

bution PVn(dv), which is discussed in Section 4. The several layers to estimate the true

state in the filtering problem are shown in Figure 2. The layer (a) represents the hid-

den true states generated by the model dynamics. The noisy observations are obtained

in the layer (b) from the true states. The conditional distribution of the true state

PUn−1( · |yn−1) is propagated into PUn( · |yn−1) by the model dynamics and it becomes

PUn( · |yn) after conditioned by the observation data as in the layer (c). The layer (d)

describes the exact filtering distributions PV̂n and PVn defined by the sequential data

assimilation process in Definition 3.7. These replicate the conditional distributions in

the layer (c). The layer (e) explains a filtering algorithm approximating the sequential

data assimilation process. The approximated operations are denoted by P̃ and L̃yn .

UnUn−1 Un
P id

(a)

Posterior Prior Posterior

PUn−1( · |yn−1) PUn( · |yn−1) PUn( · |yn)(c)
P Lyn

(b)
yn

pY ( · |Un)

PVn−1 PV̂n PVn(d)

copy copy

P Lyn

PVn−1 PV̂n PVn(e)

approximate approximate

P̃ L̃yn

Figure 2: Several layers in the filtering problems. The layers are (a) model dynamics,

(b) observation, (c) the conditional distribution, (d) the exact filtering distribution,

and (e) an approximated filtering distribution.

The filtering distribution relates to the smoothing distribution as follows. We con-

sider the PDF pV (v |yN ) of the smoothing distribution for the states v = (v0, . . . , vN ) ∈
RNu×(N+1) with respect to observations yN up to time n = N .

Proposition 3.8 ([63]). For the smoothing distribution pV (v |yN ) over the discrete

time interval 0 ≤ n ≤ N and the filtering distribution pVN
(vN | yN ) at time n = N , the

marginal of the smoothing distribution with respect to vN is the filtering distribution.∫
pV (v |yN ) dv0 . . . dvN−1 = pVN

(vN |yN ).
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For deterministic model dynamics, estimating the initial state using all observations

automatically yields an estimation of the final state.

Proposition 3.9 ([63]). For the deterministic model dynamics (3.1) with Q = O, the

push-forward of the smoothing distribution of v0 is the filtering distribution of vN .

(Ψ(N))∗ PV0( · |yN ) = PVN ( · |yN ),

where Ψ(N) denotes the N -fold composition of Ψ.

Next, we review the robustness of Bayesian formulations of data assimilation, which

is the dependence of the posterior distributions on the observation data. As a conse-

quence of Proposition 2.35, the well-posedness of the smoothing distribution PV0(· |yN )

is established for both the deterministic (Q = O) and the stochastic (Q 6= O) model

dynamics (3.1) [63]. From these results and Corollary 2.36, the mean of the estimate

of the initial state

ϖ0 = E[V0 |yN ]

is continuous with respect to yN .

3.2 Infinite dimensional problems

3.2.1 Discrete-time state space model

Let H be an infinite-dimensional Hilbert space. We first consider a discrete-time

stochastic process U : N× Ω → H satisfying

Un = Ψ(Un−1) + ξn (3.7)

with an uncertain initial state U0 ∈ H, where Ψ : H → H is continuous and (ξn)n∈H ∈ H
is an i.i.d. and mean zero noise sequence with a covariance Q ∈ Lsa(H) satisfying

Q ∈ K1(H) and Q � 0. The observation is a stochastic process Y : N × Ω → Y ,

generated by

Yn = h(Un) + ηn, n ∈ N, (3.8)

where h : H → Y is continuous and (ηn)n∈N ⊂ Y is an i.i.d. noise sequence.

When the observation space is finite dimensional, i.e., Y = RNy , we can define the

posterior distribution PVn in terms of its Radon-Nikodým derivative using the gener-

alized Bayes’ formula (Proposition 2.32 and Proposition 2.35) when we consider the

Gaussian likelihood as in Assumption 3.1. Hence, we consider Bayesian data assimila-

tion problems as in Definition 3.6.
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Definition 3.10 (Sequential data assimilation for an infinite-dimensional state space).

Suppose U and Y are governed by (3.7) and (3.8) respectively. Suppose that Y = RNy

and the observation noise satisfies Assumption 3.1. The following successive update

yields the exact filtering distribution PVn = PUn( · | yn) for n ∈ N, starting with

PV0 = PU0.

(I) (Prediction: PVn−1 → PV̂n) Propagate PVn−1 to PV̂n using the model dynamics,

PV̂n(dv) =

∫
H
K(vn−1, dv)PVn−1(dvn−1), (3.9)

where K : H× B(H) → [0, 1] is a transition kernel associated with (3.7).

(II) (Analysis: PV̂n , yn → PVn) For Φ(u; y) = 1
2 |y−h(u)|2R, define PVn ∈ M1(H) using

the generalized Bayes’ formula,

dPVn

dPV̂n

(v) ∝ exp(−Φ(v; y)), (3.10)

We have the same relationships as Propositions 3.8 and 3.9 for the infinite-dimensional

state spaces [16]. Furthermore, the well-posedness of the smoothing distribution is es-

tablished in [26].

It is not straightforward to consider a state space model with observations in infi-

nite dimensions. For the case of an infinite-dimensional observation space Y [58], the

positive definiteness of the noise covariance R � 0 implies TrR = ∞ from Proposi-

tion 2.8. Hence, R cannot be the covariance of any Gaussian distribution on Y from

Proposition 2.29. As a result, Assumption 3.1 is not valid in this context. On the other

hand, if TrR < ∞, then R is not invertible. Thus, the notation | · |R = |R− 1
2 · | is only

defined on the Cameron-Martin space Ran(R
1
2 ). In this case, the normalizing constant

of the posterior distribution PVn becomes zero. Therefore, the sequential Bayesian data

assimilation can not be considered. See [51] for detailed formulations of data assim-

ilation problems when both H and Y are infinite-dimensional. Instead of using the

Bayesian formulation, we can consider state (signal) estimation problems as defined in

Definition 3.4. Hence, we introduce an alternative assumption to Assumption 3.1 used

to define data assimilation algorithms in Section 4.

Assumption 3.11. For any n ∈ N, ηn ∼ N (0, R̃) with R̃ ∈ K1(Y), R̃ � 0, and R̃ � R

for R � 0.

3.2.2 Continuous-time state space model

For the continuous-time formulations, we do not consider the stochastic case to avoid

dealing with continuous-time stochastic processes in infinite-dimensional spaces such as

stochastic partial differential equations. Instead, we consider the infinite-dimensional
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dynamical system. To handle this, we first introduce an evolution equation in a Hilbert

space H,

du

dt
= F(u). (3.11)

We then consider noiseless observations in a lower dimensional space Y with dim(Y) ≤
dim(H).

y(t) = h(u(t)), (3.12)

where h : H → Y is an observation operator. Data assimilation problems in noiseless

situations arise from the feedback control of partial differential equations [11]. From

the perspective of control theory, it is important to determine whether and how many

finite-dimensional control inputs into the simulated state are needed to reconstruct

the true state. Such problems have been studied for dissipative dynamical systems,

in particular, for the incompressible two-dimensional Navier-Stokes equations [10] and

the incompressible three-dimensional Navier-Stokes-alpha equations [2]. This problem

is further discussed in Section 5.

We finally remark the relationships between the discrete and continuous-time, finite

and infinite-dimensional, deterministic and stochastic settings.

Remark 3.12. If Q 6= O, (3.1) is often used as a discretization of the continuous-time

dynamics. The model error ξn is interpreted as the cumulative discretization errors

over time interval [tn−1, tn] and in spatial domain [20]. For theoretical simplicity, ξn is

often assumed to be the Gaussian noise.

Remark 3.13. In many applications, the unknown true state is modeled as a continuous-

time process. However, the noisy observations are often obtained at discrete time steps

with a time interval τ > 0. With Figure 3, we explain the relationships between (3.3)

and (3.1), and between (3.11) and (3.7). For the deterministic case (3.11) (resp. (3.3))

with Q = O, we suppose that a unique solution exists for any u0 ∈ H and that it gen-

erates a one-parameter semigroup Ψt : H → H for t ≥ 0. Then, let Ψ = Ψτ and

Un = unτ , we obtain (3.7) (resp. (3.1)) with Q = O, see [54, 82] for more details. In

the case of stochastic dynamics (3.3), let Ũt be the unique solution starting at U0 = u,

it suffices to put Ψt(u) = Eu[Ũt], Ψ = Ψτ , and ξn = Ũnτ −Ψ
(
Ũn(τ−1)

)
. See also [88].
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ODE

(3.3) with Q = O

DDS

(3.1) with Q = O

MC

(3.1)

continuous-time discrete-time

semigroup

Remark 3.13

approximate

in time

Remark 3.12

PDE

(3.11)

DDS

(3.7) with Q = O

semigroup

Remark 3.13

SDE

(3.3)

MC

(3.1)

Remark 3.12

MC

(3.1)

transition kernel

Remark 3.13

approximate

in time

Remark 3.12

Figure 3: The relationships between various formulations of model dynamics. The

abbreviations are as follows: ODE (Ordinary Differential Equation), DDS (Discrete

Dynamical System), MC (Markov Chain), PDE (Partial Differential Equation), and

SDE (Stochastic Differential Equation).
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4. Filtering algorithms

4.1 The Kalman filter

For Nu, Ny ∈ N, let F ∈ RNu×Nu and H ∈ RNy×Nu . We then consider a discrete-time,

finite-dimensional linear Gaussian system,

Un = FUn−1 + ξn, Yn = HUn + ηn, (4.1)

where ξn ∼ N (0, Q) is Gaussian noise with covariance matrix Q � 0 and the Gaussian

observation noise ηn satisfies Assumption 3.1. The linear-Gaussian system (4.1) is a

special case of (3.1). We also assume that the initial uncertainty follows a Gaussian

distribution U0 ∼ N (ϖ0, P0), where ϖ0 ∈ RNu and P0 ∈ RNu×Nu with P0 � 0. The

Kalman filter (KF), originally proposed by Kalman [49], provides an exact and explicit

representation of the filtering distribution (Definition 3.7) for the system (4.1).

Definition 4.1 (KF). Suppose that the Gaussian distribution Vn−1 ∼ N (ϖn−1, Pn−1).

Then, the algorithm of the Kalman filter (KF) is as follows.

(I) (Prediction: ϖn−1, Pn−1 → ϖ̂n, P̂n) Compute the time evolution of the mean and

the covariance:

ϖ̂n = Fϖn−1, (4.2)

P̂n = FPn−1F
∗ +Q. (4.3)

(II) (Analysis: ϖ̂n, P̂n, yn → ϖn, Pn) Using Lemma 2.31, we can compute the mean

and the covariance of the posterior distribution:

ϖn = ϖ̂n +Kn(yn −Hϖ̂n), (4.4)

Pn = (I −KnH)P̂n, (4.5)

where Kn is the Kalman gain

Kn = P̂nH
∗(HP̂nH

∗ +R)−1. (4.6)

The filtering distribution is represented by Vn ∼ N (ϖn, Pn).

We introduce a concept to explain properties of the KF.

Definition 4.2 (Linear estimation). For t ∈ T , a random variable Vn : Ω → RNu is

said to be a linear estimator if E[|Un − Vn|2] = inf{|Ṽn − Un|2 | Ṽn ∈ span(Yn)}.

Proposition 4.3 (KF [4, 24, 73]). For a linear-Gaussian system (4.1), the followings

hold.
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(1) The exact filtering distribution PUn( · |Yn) becomes a Gaussian distribution.

(2) A linear estimator attains the optimal estimator.

(3) The successive updates of the mean and covariance of the Gaussian distribution

are given by Definition 4.1.

The equation (4.4) is known as the Kalman update. The following important lemma

is a consequence of the Woodbury identity (Lemma 2.18).

Lemma 4.4. The following identity holds.

INu −KnH = (INu + P̂nH
∗R−1H)−1. (4.7)

Proof. It follows from (2.8) in Lemma 2.18 with A = INu , B = P̂nH
∗, C = H, and

D = R−1 that

(INu + P̂nH
∗R−1H)−1 = INu − P̂nH

∗(R+HP̂nH
∗)−1H = INu −KnH.

Remark 4.5. For Q,P0 � 0, Pn, P̂n � 0 for all n ∈ N follow by induction. This is

confirmed by the following calculations of the inverse of the covariance matrices. For

the (4.3), by taking A = Q, B = F , C = Pn−1, and D = F ∗ in (2.8), we have

P̂−1
n = (Q+ FPn−1F

∗)−1 = Q−1 −Q−1F (P−1
n−1 + F ∗Q−1F )−1F ∗Q−1.

For the (4.5), Lemma 4.4 yields

P−1
n = P̂−1

n (INu −KnH)−1 = P̂−1
n (INu + P̂nH

∗R−1H) = P̂−1
n +H∗R−1H.

These equalities allow us to compute P̂−1
n and P−1

n iteratively without directly evaluating

P̂n and Pn. The inverses of the covariance matrices are known as the precision matrices.

See also [63].

Remark 4.6. For a degenerate matrix Q, the KF works successfully even with a de-

generated covariance Pn if R � 0. Furthermore, Definition 4.1 remains valid for an

infinite-dimensional linear-Gaussian system, in which we assume

• Linear model: F ∈ L(H),

• Gaussian model noise: ξn ∼ N (0, Q) with Q ∈ Lsa(H), Q � 0,TrQ < ∞,

• Linear observation operator: H ∈ L(H,Y) with Y ⊂ H,

• Gaussian observation noise: ηn satisfies Assumption 3.11,

• Gaussian initial uncertainty: U0 ∼ N (ϖ0, P0) with ϖ0 ∈ H, P0 ∈ K1(H), P0 � 0.
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Remark 4.7 (Limitations of the KF). While the KF is theoretically clear, it faces two

significant limitations when applied to high-dimensional and complex systems such as

atmospheric models.

(1) The KF assumes that Ψ is linear, whereas atmospheric dynamical models are

typically nonlinear.

(2) The dimension of the state space can be extremely large, reaching up to 109.

Consequently, the covariance matrix becomes 109×109, which is too large to store

in computer memory.

4.2 Extensions for nonlinear dynamics

In this section, we consider Hilbert spaces H and Y, the discrete-time nonlinear dy-

namical system (3.7) and (3.8) with a linear observation h(u) = Hu for H ∈ L(H,Y).

The observation noises satisfy Assumption 3.11. We assume that the initial uncertainty

U0 ∼ N (ϖ0, P0) where ϖ0 ∈ H and P0 ∈ K1(H) with P0 � 0. The extended Kalman

filter (ExKF) is an extension of the KF using linearization of Ψ to address limitation

(1) stated in Remark 4.7.

Definition 4.8 (ExKF). Assume that Ψ is Fréchet differentiable, and let DΨu ∈ L(H)

be its derivative at u ∈ H. For a given prior distribution Vn−1 with the mean ϖn−1

and the covariance matrix Pn−1, the algorithm of the extended Kalman filter (ExKF)

is as follows.

(I) (Prediction: ϖn−1, Pn−1 → ϖ̂n, P̂n)

ϖ̂n = Ψ(ϖn−1), (4.8)

P̂n = DΨϖn−1Pn−1DΨ∗
ϖn−1

+Q. (4.9)

(II) (Analysis: ϖ̂n, P̂n, yn → ϖn, Pn)

ϖn = ϖ̂n +Kn(yn −Hϖ̂n), (4.10)

Pn = (I −KnH)P̂n (4.11)

with the Kalman gain Kn = P̂nH
∗(HP̂nH

∗ +R)−1.

In Definition 4.8, the linearizations DΨ and DΨ∗ are called the tangent linear

and adjoint models, respectively. Usually, it is difficult to compute the derivative DΨ

numerically for high-dimensional or complex model dynamics.

The three-dimensional variational method (3DVar) is a simpler algorithm, in which

the nonlinear prediction and the Kalman update with a fixed model covariance are

repeated.
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Definition 4.9 (3DVar). For the constant model covariance P̂n = P0, the algorithm of

the 3DVar is as follows.

(I) (Prediction: ϖn−1 → ϖ̂n)

ϖ̂n = Ψ(ϖn−1). (4.12)

(II) (Analysis: ϖ̂n, yn → ϖn)

ϖn = ϖ̂n +K(yn −Hϖ̂n) (4.13)

with the Kalman gain K = P0H
∗(HP0H

∗ +R)−1.

In the step (II) of Definition 4.9, the Kalman gain K does not depend on time

n ∈ N, and the 3DVar is also known as optimal interpolation. While the 3DVar does

not require the computation of the derivative of Ψ, it still faces the issue of large-storage

requirements for the full-covariance matrix as pointed out in Remark 4.7.

4.3 Ensemble Kalman filter

We consider the same state space model as in the previous section. The ensemble

Kalman filter (EnKF) [34] approximates the filtering distribution by the empirical

distribution of an ensemble Vn = [v
(1)
n , . . . , v

(m)
n ] ∈ Hm of size m ∈ N,

PVn( · ) ≈ 1

m

m∑
k=1

δ
v
(k)
n

( · ),

where δu( · ) denotes the Dirac measure at u. Similarly, the distribution PV̂n in the

prediction step is approximated by

PV̂n( · ) ≈ 1

m

m∑
k=1

δ
v̂
(k)
n

( · ),

where V̂n = [v̂
(1)
n , . . . , v̂

(m)
n ] ∈ Hm, and each ensemble member evolves according

to the nonlinear dynamical model (3.1). The model covariance is approximated by

the ensemble covariance P̂n = Covm V̂n := 1
m−1

∑m
k=1(v̂

(k)
n − v̂n) ⊗ (v̂

(k)
n − v̂n) with

v̂n = 1
m

∑m
k=1 v̂

(k)
n . Variants of the EnKF use the same prediction step to obtain the

prediction ensemble V̂n from Vn−1. However, each variant employs a different approach

in the analysis step to generate the analysis ensemble Vn from the prediction ensemble

V̂n and observation data yn. A simple and stochastic implementation of the EnKF is

known as the perturbed observation (PO) method [19].

Definition 4.10 (PO). Let V0 = [v
(k)
0 ]mk=1 ∈ Hm. The algorithm of the perturbed

observation (PO) method consists of the following two steps. For n ∈ N,
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(I) (Prediction: Vn−1 → V̂n) Compute

v̂(k)n = Ψ(v
(k)
n−1) + ξ(k)n , ξ(k)n ∼ N (0, Q), k = 1, . . . ,m, (4.14)

and set V̂n = [v̂
(k)
n ]mk=1 ∈ Hm.

(II) (Analysis: V̂n, yn → Vn) Set P̂n = Covm(V̂n) and replicate observations by adding

random perturbations,

y(k)n = yn + η(k)n , η(k)n ∼ N (0, R), k = 1, . . . ,m, (4.15)

and update the ensemble,

v(k)n = v̂(k)n +Kn(y
(k)
n −Hv̂(k)n ), k = 1, . . . ,m, (4.16)

with the Kalman gain

Kn = P̂nH
∗(HP̂nH

∗ +R)−1. (4.17)

Finally, set Vn = [v
(k)
n ]mk=1 ∈ Hm. We denote the map from V̂n to Vn as Vn =

VPO(V̂n; yn, P̂n).

Proposition 4.11 (Well-definedness of the PO method [51]). Suppose R � 0, the PO

method is well-defined, i.e., HP̂nH
∗ +R is invertible.

We can implement the POmethod without directly evaluating P̂n to avoid successive

memory allocations.

Lemma 4.12. The analysis step (II) of the PO method can be replaced by the following

step without evaluating P̂n.

(II’) (Analysis: V̂n, yn → Vn) Decompose V̂n = v̂n1+ dV̂n. Set dŶn = HdV̂n. Define

y
(k)
n and v

(k)
n for k = 1, . . . ,m as in the step (II) with

Kn =
1

m− 1
dV̂ndŶ

∗
n

(
1

m− 1
dŶndŶ

∗
n +R

)−1

. (4.18)

We denote this map as Vn = VPO′(V̂n; yn).

Proof. The equality (4.18) follows owing to

1

m− 1
dV̂ndŶ

∗
n =

1

m− 1
dV̂ndV̂

∗
n H

∗ = P̂nH
∗

and

1

m− 1
dŶndŶ

∗
n =

1

m− 1
HdV̂ndV̂

∗
n H

∗ = HP̂nH
∗.
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As noted in [91], adding artificial noises in the analysis step of the PO method intro-

duces additional errors in approximating the analysis distribution. To avoid this issue,

deterministic versions of the EnKF, called the ensemble square root filters (ESRF),

have been proposed [5, 14, 91]. These algorithms include the computation of a matrix

square root to generate the analysis ensemble deterministically. One implementation

of the ESRF algorithm is called the ensemble transform Kalman filter (ETKF) [14].

Definition 4.13 (ETKF). Let V0 = [v
(k)
0 ]mk=1 ∈ Hm. The algorithm of the ensemble

transform Kalman filter (ETKF) consists of the following two steps.

(I) (Prediction: Vn−1 → V̂n) This step is the same as the step (I) of the PO method

in Definition 4.10.

(II) (Analysis: V̂n, yn → Vn) Decompose V̂n = v̂n1 + dV̂n and set P̂n = Covm(dV̂n).

Update the mean

vn = v̂n +Kn(yn −Hv̂n) (4.19)

with the Kalman gain Kn = P̂nH
∗(HP̂nH

∗ + R)−1. Take a symmetric matrix

Tn ∈ Rm×m satisfying

1

m− 1
dV̂nTn(dV̂nTn)

∗ = (IH −KnH)P̂n, (4.20)

and transform the ensemble perturbation dVn = dV̂nTn. The matrix Tn is called a

transform matrix. Finally, set the analysis ensemble Vn = vn1+dVn. We denote

the map as Vn = VETKF (V̂n; yn, P̂n).

Theorem 4.1 (Well-definedness of the ETKF [82]). Suppose R � 0. For any V̂n ∈ Hm,

there exists a unique symmetric transform matrix Tn ∈ Rm×m satisfying (4.20). It is

given by

Tn =

(
Im +

1

m− 1
dV̂ ∗

n H
∗R−1HdV̂n

)− 1
2

. (4.21)

To prove Theorem 4.1, we prepare the key property of the Kalman gain Kn.

Lemma 4.14. Let P̂n � 0, H ∈ L(H,Y), and R ∈ L(Y) with R � 0. The Kalman

gain satisfies

Kn = (IH −KnH)P̂nH
∗R−1, (4.22)

and (4.19) is equivalent to

(IH + P̂nH
∗R−1H)vn = v̂n + P̂nH

∗R−1yn. (4.23)
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Proof. For simplicity, we omit the time index n in the following proofs since n ∈ N is

fixed. Owing to P̂ � 0 and R � 0, we have R +HP̂H∗ � 0 and it is thus invertible.

Then, IY + R−1HP̂H∗ = R−1(R + HP̂H∗) is also invertible since a product of two

positive definite operators has positive spectrum as in Proposition 2.5. From (2.9) and

the fact that (AB)−1 = B−1A−1 for invertible A,B, we have

(R+HP̂H∗)−1 = (IY +R−1HP̂H∗)−1R−1

= [IY − (IY +R−1HP̂H∗)−1R−1HP̂H∗]R−1

= [IY − (R+HP̂H∗)−1HP̂H∗]R−1.

Hence, we have

K = P̂H∗(R+HP̂H∗)−1 = P̂H∗[IY − (R+HP̂H∗)−1HP̂H∗]R−1

= (IH −KH)P̂H∗R−1,

which is (4.22). On the other hand, it follows from (4.22) that

v = v̂ +K(y −Hv̂) = (IH −KH)v̂ +Ky = (IH −KH)v̂ + (IH −KH)P̂H∗R−1y.

To show (4.23), it is sufficient to verify (IH + P̂H∗R−1H)(IH −KH) = IH with (4.6).

This follows from Lemma 4.4

Proof of Theorem 4.1. First, we prove the existence of Tn satisfying (4.20). Let dY =

HdV̂ . Then, the operator R+ 1
m−1dY dY ∗ = R+HP̂H∗ is invertible, and we consider

the symmetric matrix

S = Im − 1

m− 1
dY ∗

(
R+HP̂H∗

)−1
dY ∈ Rm×m.

Then, we have

1

m− 1
dV̂ SdV̂ ∗ =

1

m− 1
dV̂ dV̂ ∗ − 1

m− 1
dV̂ dY ∗

(
R+HP̂H∗

)−1 1

m− 1
dY dV̂ ∗

= P̂ − P̂H∗(R+HP̂H∗)−1HP̂ = (I −KH)P̂ ,

in which, we use 1
m−1dY dV̂ ∗ = HP̂ . From (2.12), we have

S =

(
Im +

1

m− 1
dY ∗R−1dY

)−1

(4.24)

and S � 0. We finally define the transform matrix T = S
1
2 , which is nothing but (4.21).

Then T becomes symmetric by definition.

Theorem 4.1 is an extension of the well-definedness of the ETKF algorithm [60] to

Hilbert spaces which can be infinite-dimensional. We also consider a practical imple-

mentation of the ETKF as Lemma 4.12.
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Lemma 4.15. The following analysis step is equivalent to the step (II) of the ETKF.

(II’) (Analysis: V̂n, yn → Vn) Decompose V̂n = v̂n1+ dV̂n. Define the modified trans-

form matrix

T̃n =
1

m− 1
T 2
ndV̂

∗
n H

∗R−1(yn −Hv̂n)1+ Tn, (4.25)

and transform

Vn = v̂n1+ dV̂nT̃n.

We denote the map as Vn = VETKF ′(V̂n; yn).

Note that this alternative step avoids redundant memory allocations in practical

numerical computation since we don’t need to evaluate the covariance P̂n explicitly.

Proof. By multiplying the first term of (4.25) by dV̂ , it follows by definition of Tn that

dV̂n
1

m− 1
T 2
ndV̂

∗
n H

∗R−1(yn −Hv̂n) = (IH −KnH)P̂nH
∗R−1(yn −Hv̂n)

= Kn(yn −Hv̂n),

where the last equality follows from the relation for the Kalman gain (4.22).

Another implementation of the ESRF is called the ensemble adjustment Kalman

filter (EAKF) [5].

Definition 4.16 (EAKF). Let V0 = [v
(k)
0 ]mk=1 ∈ Hm. The algorithm of the ensemble

adjustment Kalman filter (EAKF) is as follows.

(I) (Prediction: Vn−1 → V̂n) This step is the same the step (I) of the PO method

Definition 4.10.

(II) (Analysis: V̂n, yn → Vn) Decompose V̂n = v̂n1 + dV̂n and set P̂n = Covm(V̂n).

Update the mean

vn = v̂n +Kn(yn −Hv̂n) (4.26)

with the Kalman gain Kn = P̂nH
∗(HP̂nH

∗ + R)−1. Take an appropriate An ∈
L(H), called an adjustment operator, satisfying

1

m− 1
AndV̂n(AndV̂n)

∗ = (IH −KnH)P̂n, (4.27)

and transform the ensemble perturbation as dVn = AndV̂n. Finally, set the anal-

ysis ensemble Vn = vn1+ dVn. We denote the map as Vn = VEAKF (V̂n; yn, P̂n).

The existence of the adjustment operator An is guaranteed by the following theorem.
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Theorem 4.2 (Well-definedness of the EAKF). Suppose R � 0. For any V̂n ∈ Hm,

there exists an adjustment operator An ∈ L(H) satisfying (4.27). It is given by

An = ΦΣE(Iκ + Λ)−
1
2Σ−1Φ∗. (4.28)

Here, κ = rank P̂n, Σ = diag(s1, . . . , sκ) is the diagonal matrix consisting of the square

root of non-zero eigenvalues of P̂n with the descending order, Φ = [ϕ1, · · · , ϕκ] ∈ Hκ is

the corresponding eigenvectors, i.e.,

P̂n = ΦΣ2Φ∗. (4.29)

Moreover, the diagonal matrix Λ ∈ Rκ×κ and a matrix E ∈ Rκ×κ consist of the eigen-

values and eigenvectors of the symmetric matrix ΣΦ∗H∗R−1HΦΣ ∈ Rκ×κ respectively,

i.e.,

ΣΦ∗H∗R−1HΦΣ = EΛE∗. (4.30)

Proof. The proof is just an extension of that for a rank deficient case in [69, 88] to

when the state space is an infinite-dimensional Hilbert space.

1

m− 1
AdV̂ (AdV̂ )∗ =

1

m− 1
ΦΣE(Iκ + Λ)−

1
2Σ−1Φ∗dV̂ dV̂ ∗ΦΣ−1(Iκ + Λ)−

1
2E∗ΣΦ∗

= ΦΣE(Iκ + Λ)−
1
2Σ−1Φ∗P̂nΦΣ

−1(Iκ + Λ)−
1
2E∗ΣΦ∗

= ΦΣE(Iκ + Λ)−
1
2 Iκ(Iκ + Λ)−

1
2E∗ΣΦ∗

= ΦΣE(Iκ + Λ)−1E∗ΣΦ∗

= ΦΣ(Iκ + EΛE∗)−1ΣΦ∗

= Φ(Σ−2 +Σ−1EΛE∗Σ−1)−1Φ∗

= Φ(Σ−2 +Φ∗H∗R−1HΦ)−1Φ∗. (4.31)

Here, the third equality follows from (4.29), the fifth and sixth equalities follow from

Lemma 2.21, and the last equality follow from (4.30). Applying the Woodbury identity

(Lemma 2.18) for A = Σ−2, B = Φ∗H∗, C = R−1, and D = B∗, we obtain

(Σ−2 +Φ∗H∗R−1HΦ)−1 = Σ2 − Σ2Φ∗H∗(R+HΦΣ2Φ∗H∗)−1HΦΣ2.

Substituting this into (4.31),

1

m− 1
AdV̂ (AdV̂ )∗ = Φ(Σ−2 +Φ∗H∗R−1HΦ)−1Φ∗

= ΦΣ2Φ∗ − ΦΣ2Φ∗H∗(R+HΦΣ2Φ∗H∗)−1HΦΣ2Φ∗

= P̂n − P̂nH
∗(R+HP̂nH

∗)−1HP̂n

= P̂n −KnHP̂n = (IH −KnH)P̂n.
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The simplified version of the analysis step (II) of the EAKF is given as follows.

Lemma 4.17. The following analysis step is equivalent to the step (II) of the EAKF

in Definition 4.16.

(II’) (Analysis: V̂n, yn → Vn) Decompose V̂n = v̂n1+ dV̂n. Update the mean

vn = v̂n +Kn(yn −Hv̂n)

with the Kalman gain given by (4.18). Apply the singular value decomposition

1√
m− 1

dV̂ = ΦΣẼ∗, (4.32)

where Ẽ ∈ Rκ×κ is a unitary matrix. Also, apply the eigenvalue decomposition

1

m− 1
dV̂ ∗H∗R−1HdV̂ = E′Λ′(E′)∗, (4.33)

where E′ ∈ Rκ×κ is a unitary matrix. Define the adjustment operator

Ãn = ΦΣẼ∗E′(Iκ + Λ′)−
1
2Σ−1Φ∗. (4.34)

The rest of the algorithm is the same as (II) in Definition 4.16 with An = Ãn.

We denote the map as Vn = VEAKF ′(V̂n; yn).

Proof. By substituting (4.32) into (4.33), we have

ẼΣΦ∗H∗R−1HΦΣẼ∗ = E′Λ′(E′)∗.

Hence, it follows from (4.30) that

Ẽ∗E′Λ′(E′)∗Ẽ = ΣΦ∗H∗R−1HΦΣ = EΛE∗.

Since E,E′, Ẽ are unitary, we get

Λ′ = Λ, Ẽ∗E′ = E.

This implies Ãn = An given by (4.28).

The EnKF provides a low-rank approximation of the covariance without computing

the derivative of Ψ. There still remains the other issue originated from using the finite

size ensemble.

Remark 4.18. Due to the prediction covariance P̂n is approximated by an ensemble

of m vectors, the rank is bounded by

rank P̂n ≤ m− 1.

Moreover, the analysis ensemble lies in the subspace spanned by the prediction ensemble.

This is so-called the subspace property of the EnKF [78], which is shared with algorithms

related to the EnKF [47, 90]. The numerical approaches to this limitation are discussed

in Section 4.4.
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4.4 Numerical techniques for the EnKF

The choice of the prediction covariance P̂n in the analysis step is crucial for the filtering

algorithms. In the EnKF, it is approximated by propagating the analysis covariance

Pn−1 from the previous time. In practical numerical applications, P̂n is often underes-

timated in uncertain directions of the high-dimensional state space due to the limited

ensemble size m � Nu, which leads to poor state estimation. To resolve this issue,

covariance inflation techniques extend data assimilation algorithms by introducing an

additional parameter α. The idea of the covariance inflation is to inflate P̂n before the

analysis step [8, 69, 91]. The method of introducing inflation depends on the filtering

algorithm, as described below.

Definition 4.19 (Additive inflation for the PO method). Let α ≥ 0. In the analysis

step (II) of Definition 4.10, one defines an inflated covariance P̂α
n = P̂n + α2IH and

computes Vn = VPO(V̂n; yn, P̂
α
n ).

This approach is called an additive inflation of the covariance, and α is referred to

as the inflation parameter.

Definition 4.20 (Multiplicative inflation for the EnKF). Let α ≥ 1. In the analysis

step of the EnKF algorithms, one introduces the multiplicative inflation as follows.

(1) In (II) of Definition 4.10, one defines an inflated covariance P̂α
n = α2P̂n and

computes Vn = VPO(V̂n; yn, P̂
α
n ).

(1’) In (II) of Definition 4.10, one defines an inflated perturbation dV̂ α
n = αdV̂n

and ensemble V̂ α = v̂n1 + dV̂ α, covariance P̂α
n = Covm(dV̂ α

n ), and computes

Vn = VPO(V̂
α
n ; yn, P̂

α
n ). Equivalently, one can compute Vn = VPO′(V̂ α

n ; yn) in

Lemma 4.12.

(2) In (II) of Definition 4.13, one computes Vn = VETKF (V̂
α
n ; yn, P̂

α
n ) with dV̂ α

n , P̂α
n

as in (1’). Equivalently, one can compute Vn = VETKF ′(V̂ α
n ; yn) in Lemma 4.15.

(3) In (II) of Definition 4.16, one computes Vn = VEAKF (V̂
α
n ; yn, P̂

α
n ) with dV̂ α

n , P̂α
n

as in (1’). Equivalently, one can compute Vn = VEAKF ′(V̂ α
n ; yn) in Lemma 4.17.

Remark 4.21. The additive inflation directly improves the rank of P̂ , ensuring that P̂α

is full-rank. However, the multiplicative inflation does not. Instead, the multiplicative

inflation for the ensemble (1’), (2), (3) in Definition 4.20 may maintain the rank of the

ensemble covariance in a successive data assimilation process since the ensemble V̂ α
n is

inflated before the contraction in the analysis step. This observation plays an important

role in establishing the error bound of the ESRF and is discussed in Section 7.
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Remark 4.22. For the ETKF and the EAKF, the relationships between the prediction

and analysis ensembles are summarized as follows. The mean update (4.23) is given by

(IH + α2P̂nH
∗R−1H)vn = v̂n + α2P̂nH

∗R−1yn, (4.35)

and the analysis covariance satisfies

Pn =
α2

m− 1
dV̂n(Im + α2dV̂ ∗

n H
∗R−1HdV̂n)

−1dV̂ ∗
n . (4.36)

For the PO method, these equalities hold only in the meaning of the conditional expec-

tation provided V̂n and yn.

The covariance inflation techniques practically improve the state estimation error in

the ESRF with multiplicative inflation [69, 91], in the PO method with additive inflation

[54]. For large-scale atmospheric models, large α is often required, and manual tuning

of α is expensive [45]. To avoid this, adaptive tuning algorithms have been developed

[6, 7, 72]. Another approach focuses on the residual, which is the difference between

the measured observation and the simulated (or predicted) observation, and they derive

upper and lower bounds of α for the multiplicative inflation to ensure that the residual

remains within a prescribed interval [68].

Related numerical techniques, known as the relaxation-to-prior methods, relax the

contraction of the ensemble at the analysis step. For instance, the relaxation to prior

perturbation (RTPP) method [94] interpolates the prediction and analysis ensemble

perturbations with the ratio of α ∈ [0, 1] as

dV α
RTPP = αdV̂ + (1− α)dV .

Another example is the relaxation to prior spread (RTPS) method [92], which relaxes

the contraction of the analysis ensemble spread by multiplying a factor determined for

each component in the state space for α ∈ [0, 1].

dV α
RTPS [i] = αidV [i], αi =

α|dV̂ [i]|2 + (1− α)|dV [i]|2
|dV [i]|2

,

where V [i] = [(v(k))i]mk=1 denotes an ensemble of the i-th component of each vector

for V ∈ RNu×m. Adaptive tuning methods for the RTPP and RTPS have also been

proposed [57, 93].

The other technique to avoid covariance underestimation is called the localization

[40, 46, 91]. The central idea is to ignore observations in regions far from each state

variable during the analysis step. A well-known algorithm using this approach is the

local ensemble transform Kalman filter (LETKF) [46]. Although localization techniques

are essential technique in the EnKF, mathematical analysis with the localization is not

covered in this thesis, see [31, 87, 90].
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4.5 Continuous-time algorithms

The continuous version of the KF for (3.3) and (3.4) is called the Kalman Bucy fil-

ter (KBF) [73, 80]. Let us consider the continuous-time and finite-dimensional linear

system for (3.3) and (3.4) with

F(u) = Fu, h(u) = Hu, (4.37)

where F ∈ RNu×Nu ,H ∈ RNy×Nu for Nu, Ny ∈ N and a Gaussian initial uncertainty

U0 ∼ N (ϖ0, P0) with ϖ0 ∈ H, P0 ∈ RNu×Nu , P0 � 0.

Proposition 4.23 (The Kalman Bucy filter [73, 80]). Suppose the observation noise in

(3.4) with (4.37) satisfies Assumption 3.3. Then, Vt = E[Ut |F Y
t ] satisfies the equations

in Definition 4.24.

Definition 4.24 (The Kalman Bucy filter). The Kalman Bucy filter (KBF) is defined

by the following equations.

dVt = (F − PtH
∗R−1H)Vt dt+ PtH

∗R−1dYt

= FVt dt+Kt(dYt −HVt dt),

V0 = ϖ0,

where Kt = PtH
∗(HPtH

∗ +R)−1 with the covariance Pt of Vt satisfying

dPt

dt
= FPt + PtF

∗ +Q− PtH
∗R−1HPt = FPt + PtF

∗ +Q−KtRK∗
t .

The continuous-time extensions of the EnKF have also been proposed and summa-

rized in [13]. Here, we introduce a deterministic version called the ensemble Kalman

Bucy filter (EnKBF), which is available for the nonlinear system (3.3) and (3.4).

Definition 4.25 (The ensemble Kalman Bucy filter [12]). Let the model dynamics

follow (3.3) and V0 ∈ Hm. Suppose that the observation noise in (3.4) satisfies As-

sumption 3.3. Then, the EnKBF is given by

dV
(k)
t = F(V

(k)
t ) dt+QP †

t (V
(k)
t − vt) dt−

1

2
P̃tR

−1(h(V
(k)
t ) dt+ ht dt− 2 dYt)

for k = 1, . . . ,m, where P †
t is the pseudo inverse of Pt and

vt =
1

m

m∑
k=1

V
(k)
t , Pt =

1

m− 1

m∑
k=1

(V
(k)
t − vt)⊗ (V

(k)
t − vt),

ht =
1

m

m∑
k=1

h(V
(k)
t ), P̃t =

1

m− 1

m∑
k=1

(V
(k)
t − vt)⊗ (h(V

(k)
t )− ht).
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5. Dissipative dynamical systems

Let us consider the evolution equation (3.11). We focus on dissipative dynamical sys-

tems on Hilbert spaces H, in particular, chaotic systems that appear in atmospheric and

oceanic modeling. See the handbook [38] for further examples of dynamical systems in

fluid mechanics.

5.1 Dissipativeness and examples

In the mathematical analysis of data assimilation algorithms, it is essential to ensure

that the trajectory is bounded and to estimate the time evolution of the error between

two trajectories with a small initial perturbation. We consider two assumptions on the

deterministic model dynamics (3.11) to characterize dissipative dynamical systems.

Assumption 5.1. The evolution equation (3.11) has a unique solution for any u0 ∈ H,

which generates a one-parameter semigroup Ψt : H → H. In addition, there exists ρ > 0

such that Ψt has an absorbing ball B(ρ) = {v ∈ H | |v| ≤ ρ}, i.e., Ψt(v) ∈ B(ρ) for any

v ∈ B(ρ) and t ≥ 0.

Assumption 5.2. There exists β ∈ R such that,

〈F(u)−F(v), u− v〉 ≤ β|u− v|2, (5.1)

for any u ∈ B(ρ) and v ∈ H.

Kelly et al. [54] impose specific assumptions on F in addition to (5.1), as it is

designed for the two-dimensional Navier-Stokes equations with periodic boundary con-

ditions. Assumption 5.2 implies the following lemma to estimate the error growth along

the dynamical system.

Lemma 5.3 (The upper bound of the error growth [54, 82]). Suppose that Assump-

tion 5.1 and 5.2 hold. Then,

|Ψt(u)−Ψt(v)| ≤ eβt|u− v|, (5.2)

for any u ∈ B(ρ), v ∈ H and t > 0.

From Lemma 5.3, we can interpret β as the (upper bound of) maximum error

growth rate in the absorbing ball. If β < 0, any perturbation contracts to zero expo-

nentially fast, indicating that the dynamical system is not chaotic. It is noteworthy

that Lemma 5.3 does not assume the scale of the initial error |u− v|.
In the following error analysis, u and v represent the true and analysis states,

respectively. Considering the ensemble mean as the analysis state, we require another

inequality to estimate the error growth. To this end, we consider the following stronger

assumption.
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Assumption 5.4. For ρ > 0 in Assumption 5.1 and F in (3.11), there exists β > 0

such that

|F(u)−F(v)| ≤ β|u− v|, u, v ∈ B(ρ).

Then, we have the following lemma.

Lemma 5.5 (Upper bound of the error growth for the ensemble mean [82]). Suppose

Assumption 5.1 and Assumption 5.4 hold, and that u0 ∈ B(ρ) and v
(n)
0 ∈ B(ρ) for

n = 1, . . . , N . We define ut = Ψt(u0) and vt =
1
N

∑N
n=1Ψt(v

(n)
0 ). Then, for any ϵ > 0,

t > 0, we have

|vt − ut|2 ≤ e2(β+ϵ)t(|v0 − u0|2 +D)−D, (5.3)

where D = β2ρ2

(β+ϵ)ϵ .

5.1.1 Examples of finite-dimensional dissipative dynamical systems

We introduce two examples of finite-dimensional dissipative dynamical systems.

Example 5.6. The Lorenz 63 equation (L63) is a three-dimensional nonlinear ordinary

differential equation given by

dx

dt
= −σx+ σy, (5.4a)

dy

dt
= ϱx− y − xz, (5.4b)

dz

dt
= −bz + xy, (5.4c)

where σ > 0, b > 1, and ϱ > 0. It was originally proposed by Lorenz [65]. In [85], a

shifted version of the L63 equation is considered to analyze its absorbing property. By

the changing variables (x, y, z) 7→ (x, y, z − ϱ− σ), (5.4) becomes

dx

dt
= −σx+ σy, (5.5a)

dy

dt
= −σx− y − xz, (5.5b)

dz

dt
= −bz + xy − b(ϱ+ σ). (5.5c)

The L63 equation satisfies the assumptions of dissipative dynamical systems.

Proposition 5.7 ([41, 85]). Let H = R3 and u = (x, y, z)∗ ∈ R3. Then, for any

u0 ∈ H, there exists a unique solution u(t) ∈ H to (5.5) with u(0) = u0. The L63

equation satisfies Assumption 5.1 with ρ = b(ϱ+σ)√
4(b−1)

, Assumption 5.2 with β = 2ρ − 1,

and Assumption 5.4 with some β > 0. Furthermore, there exists a global attractor A .

45



Figure 4 shows the projected global attractor of the L63 equation with typical

parameters σ = 10, b = 8
3 , ϱ = 28. We can enjoy the interactive animation of the

trajectories of the L63 equation on on the web site https://kotatakeda.github.io/

lorenz-webgl [81].
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Figure 4: The global attractor of the L63 equation with σ = 10, b = 8
3 , ϱ = 28.

Another important example is the Lorenz 96 (L96) equation, which is a spatially

extended chaotic phenomenological model in meteorology [66, 67]. The L96 equation

also satisfies the assumptions.

Example 5.8. For a given number of components J ∈ N, the L96 equation for a state

vector u = (u1, . . . , uJ)∗ ∈ RJ is given by

dui

dt
= (ui+1 − ui−2)ui−1 − ui + f, i = 1, . . . , J, (5.6)

where u−1 = uJ−1, u0 = uJ , and uJ+1 = u1 and f ∈ R is external forcing.

Proposition 5.9 ([62]). Let H = RJ . Then, for any u0 ∈ H, there exists a unique

solution u(t) ∈ H to (5.6) with u(0) = u0. The L96 equation satisfies Assumption 5.1

with ρ =
√
2J |f |, Assumption 5.2 with β = 2ρ − 1, and Assumption 5.4 with β > 0.

Furthermore, there exists the global attractor A .

5.1.2 Examples of infinite-dimensional dissipative dynamical systems

Let Ω be an open subset of Rd for d ∈ N. For 1 ≤ p ≤ ∞, Lp(Ω) denotes the space

of Lp functions on Ω. Similarly, for n ∈ N and 1 ≤ p ≤ ∞, Wn,p(Ω) denote the space

of Lp functions on Ω whose weak k-th derivatives belong to Lp(Ω) for k = 1, . . . , n. In

particular, Hn(Ω) = Wn,2(Ω). The standard L2 and H1 norms are denoted by | · | and
‖ · ‖, respectively. For a Banach space X , 1 ≤ p ≤ ∞ (resp. n ∈ N), −∞ ≤ a < b ≤ ∞,
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Lp(a, b;X ) (resp. Hn(a, b;X )) denotes the space of Lp (resp. Hn) functions from (a, b)

to X . Similarly, for −∞ < a < b < ∞, we denote the space of continuous functions

from [a, b] to X by C([a, b];X ). The two-dimensional Navier-Stokes equations are given

as follows.

Example 5.10 (The two-dimensional Navier-Stokes equations). For L > 0, let Ω =

[0, L]2 and let V be the set of vector-valued L-periodic trigonometric polynomials ϕ :

Ω → R2 with ∇·ϕ = 0 and
∫
Ω ϕ = 0. We define its closures with respect to the L2-norm

as H = V
|·|

and with respect to the H1-norm as V = V
∥·∥

. We consider the Leray-

Helmholtz projector PH, i.e., the L2-orthogonal projection PH : L2(Ω) → H. With

the notations in [41, 54, 59, 85], the incompressible two-dimensional Navier-Stokes

equations with periodic boundary conditions are given by

du

dt
+Au+ B(u, u) = f, (5.7)

where an unbounded linear operator A : H → V∗ is defined as A = −ν4, a symmetric

bilinear operator B : V × V → V∗ is defined as B(u, v) = 1
2 [PH(u · ∇)v + PH(v · ∇)u],

ν > 0 is the kinematic viscosity and f ∈ H is a time independent forcing. The domain

of A in H is denoted by D(A).

We refer to the incompressible two-dimensional Navier-Stokes equations with peri-

odic boundary conditions as the 2D-NSE on a torus.

Proposition 5.11 (The 2D-NSE on a torus [41, 84, 85]). For u0, f ∈ H, there exists

a unique weak solution to (5.7) with u(0) = u0 satisfying

u ∈ C([0, T ];H) ∩ L2(0, T ;V), du

dt
∈ L2(0, T ;V∗)

for any T > 0. The semigroup Ψt : H 3 u0 7→ ut ∈ H is well-defined for t ≥ 0, and it

is continuous from H into itself. A ball B(ρ) = BH(ρ) in H with ρ = |f |
νλ1

is absorbing

where λ1 > 0 is the smallest eigenvalue of A. There exists β ∈ R for Assumption 5.2.

Furthermore, if u0 ∈ V, there exists a unique strong solution satisfying

u ∈ C([0, T ];V) ∩ L2(0, T ;D(A)),
du

dt
∈ L2(0, T ;H)

for any T > 0. The semigroup Ψt : V → V is defined for t ≥ 0. Assumption 5.1 and

5.2 hold for V instead of H with some ρ > 0 and β ∈ R. Furthermore, there exists a

global attractor A ⊂ V.

Similar results to Proposition 5.11 hold when the 2D-NSE is considered under the

no-slip Dirichlet boundary condition [84, 85] on a bounded domain. For the three-

dimensional Navier-Stokes equations, it is difficult to prove the existence of a global-

in-time regular solution. However, for regularized versions like the Camassa-Holm or

Navier-Stokes-alpha equations, the global existence and uniqueness have been proved

[35, 71]. Similarly, the well-posedness results are obtained for the Leray-alpha [22], and

Navier-Stokes-omega equations [64].
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5.2 Reconstructing the state from partial observations

As noted in Section 1, one of the essential roles of data assimilation is to reconstruct

the true state using only partial observations in a finite-dimensional space. Here, we

consider the noiseless observation (3.12) on a Hilbert space to discuss the problem

of partial observations in an ideal setting. This problem is related to estimating the

degrees of freedom of dynamical systems based on control theory.

5.2.1 Continuous data assimilation for the Navier-Stokes equations

The problem known as “continuous data assimilation” was formulated to obtain an

appropriate initial state in the numerical weather prediction using the time series of

incomplete observation data, see also [21, 28]. Similar numerical studies [18, 42] inves-

tigate whether the small-scale dynamics are subordinated by the large scale dynamics

in the atmospheric motions. Let us consider the 2D-NSE (5.7) on a flat torus T2. Any

function a : T2 → R2 can be represented as

a =
∑
k∈I

âkϕk,

where I = {2πm | m ∈ Z2 \ {0}} is the index set, ϕk(x) = eik·x is the orthogonal basis

of H, and âk = â−k for k ∈ I . We define the orthogonal projections Pλ for λ > 0 by

Pλa =
∑

|k|2≤λ

âkϕk,

which are considered as the sparse observation operators with the smallest length scale

λ− 1
2 and we write Qλ = I − Pλ. This is a special case for (3.11) and (3.12) by setting

h(u) = Pλu. Then, we consider two solutions u1 and u2 to (5.7) and decompose them

into the large and small scale parts as

ui(t) = pi(t) + qi(t), pi(t) = Pλui(t), qi = Qλui(t), i = 1, 2. (5.8)

In the context of the numerical weather prediction, u1 and u2 correspond to the true

state and its approximation, respectively. Only p1 is obtained from noiseless observa-

tions. The following algorithm, which inserts observed data directly, is called continuous

data assimilation (CDA) or the synchronization filter. Let ϖ ∈ V be an initial guess

for the initial state u1(0).

Definition 5.12 (CDA for the 2D-NSE on a torus). To estimate u1, we copy the large

scale part p1 of u1 to that of u2, i.e.,

p2(t) = p1(t). (5.9)

We approximate the small-scale part q1 by integrating

dq2
dt

+Aq2 +QλB((p1 + q2), (p1 + q2)) = Qλf, q2(0) = Qλϖ. (5.10)
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The concept of determining modes is important for characterizing the necessary

length scale for synchronization [36, 74].

Definition 5.13. The number of determining modes is the smallest rank of the pro-

jection Pλ such that the convergence

lim
t→∞

|Pλu1(t)− Pλu2(t)| = 0

implies that

lim
t→∞

|u1(t)− u2(t)| = 0

for any two solutions u1 and u2 to (5.7).

The following result provides the bound for λ.

Proposition 5.14 ([48, 74]). Let u1 and u2 be two solutions of (5.7) with corresponding

time-independent forcings f1, f2 ∈ H, and initial conditions u1(0), u2(0) ∈ V. Then,

there exists a constant c > 0 independent of ν, fi, and any initial conditions such that

the convergence

lim
t→∞

|Pλu1(t)− Pλu2(t)| = 0

implies that

lim
t→∞

‖u1(t)− u2(t)‖ = 0

for any λ > cGr(f1)(2π/L)
2. Here, Gr(f) = (L/2πν)2 lim supt→∞ |f(t)| is called the

Grashof number and ‖ · ‖ is the H1-norm.

The convergence rate is also estimated in [74]. This analysis provides guidelines on

the a necessary dimension of observations needed to estimate the true solution even for

data assimilation problems with observation noises. Korn [55, 56] studied continuous

data assimilation for the regularized Navier-Stokes equations.

Remark 5.15 (Point wise observations). In real-world applications, it is often difficult

to insert observation data into the model state directly. For example, if the measured

data are the values of the exact solution at discrete spatial points, then the exact spatial

derivatives cannot be obtained. Azouani et al. [10, 11] proposed a new algorithm for

general observation operators based on the control theory, in which the observed infor-

mation from the true solution is inserted into the vector field of the evolution equation

through an interpolant operator.
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5.2.2 Continuous data assimilation for finite-dimensional system

For finite-dimensional dynamical systems such as the L63 and L96 equations, continuous

data assimilation can also be well-defined. Let H = RNu , and P ∈ RNu×Nu be a

projection matrix, where each row is the standard basis in RNu , and set Q = I − P .

Let u and v be the true solution and its approximate solution to (3.11) respectively.

The observation function is given by h(u) = Pu, and the initial guess is ϖ ∈ RNu . We

can define the continuous data assimilation for the system as in Definition 5.12.

Definition 5.16 (CDA for ODE). To estimate u, we replace the large-scale part in v

as

v = Pu+ q. (5.11)

The small-scale part q is defined by integrating

dq

dt
= QF(Pu+ q), q(0) = Qϖ. (5.12)

For the L96 equation with J = 3J ′ for J ′ ∈ N, we consider the projection matrix,

P = [ϕ1, ϕ2, 0, ϕ4, ϕ5, 0, . . . ] ∈ RJ×J , (5.13)

where (ϕj)
J
j=1 is the standard basis of RJ . Note that rank(P) = 2J ′ = 2

3J .

Proposition 5.17 (CDA for the L96 [62]). Let u be a solution to the L96 equation (5.6)

with an initial state u0 ∈ B(ρ) for ρ > 0 given by Proposition 5.9, and v is obtained by

(5.11) and (5.12) with P in (5.13) for the L96 equation (5.6). Then, we have

lim
t→∞

|u(t)− v(t)| = 0.

A similar result follows for the L63 with the following projection onto the first

component x as in [41]:

P =

 1 0 0

0 0 0

0 0 0

 . (5.14)

5.2.3 Discrete data assimilation

Let us return to the case when H is infinite-dimensional. The results in the previous

sections were obtained under the assumption that the observation data is continuous in

time. However, in real-world applications, observation data is often obtained at discrete

times. We consider a finite-rank orthogonal projection P on H, and denote Q = I−P .

For a solution u to (3.11), let Ψt be the associated semigroup. An increasing sequence

(tn)n∈N ⊂ [0,∞) represents discrete times when observation data are obtained. Let

q0 ∈ Q(H) be an initial guess. Hayden et al. [41] proposed discrete data assimilation

as an analog of continuous data assimilation.
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Definition 5.18 (Discrete data assimilation). For n = 0, let v0 = Pu0 + q0. For each

n ∈ N, vn is defined by

vn = Pu(tn) +QΨtn−tn−1(vn−1), (5.15)

and define the piecewise continuous function in time v(t) by

v(t) = Ψt−tn−1(vn−1), (5.16)

for t ∈ [tn−1, tn).

Then, the following convergence result is established.

Proposition 5.19 (Discrete data assimilation for the L63 equation [41]). Let u(t)

be a solution to (5.4) with u0 ∈ A for the global attractor A . Then, there exists

t∗ = t∗(σ, b, ϱ) > 0 such that the approximate solution v(t) defined by (5.15) and (5.16)

with P as in (5.14) and tn = τn converges to u(t) for any τ ∈ (0, t∗], i.e.,

lim
t→∞

|u(t)− v(t)| = 0.

Remark 5.20 ([41]). If σ = 10, b = 8/3, ϱ = 28, then the time t∗ is estimated by

0.000129.

We have similar results for the L96 equation and the 2D-NSE on a torus.

Proposition 5.21 (Discrete data assimilation for the L96 equation [62]). Let u(t) be

a solution to (5.4) with u0 ∈ B(ρ) for ρ given by Proposition 5.9. Then, there exists

t∗ = t∗(F, J) > 0 such that the approximate solution v(t) defined by (5.15) and (5.16)

with P as in (5.13) and tn = τn converges to u(t) for any τ ∈ (0, t∗], i.e.,

lim
t→∞

|u(t)− v(t)| = 0.

Proposition 5.22 (Discrete data assimilation for the 2D-NSE on a torus [41]). Let

u(t) be a solution to (5.7) with u0 ∈ A and q0 ∈ V. Then, there exists λ∗ =

λ∗(‖q0‖, |f |, ν,Ω) > 0 such that for any λ > λ∗, there exists t∗ = t∗(λ, ‖q0‖, ρ, ν,Ω) > 0

such that the approximate solution v(t) defined by (5.15) and (5.16) with P = Pλ and

tn = τn converges to u(t) for any τ ∈ (0, t∗], i.e.,

lim
t→∞

‖u(t)− v(t)‖ = 0.

As a corollary, we achieve the convergence for any time interval by taking a suffi-

ciently large λ > 0.

Corollary 5.23 ([41]). For any t∗ > 0, there exists λ = λ(ρ, ‖q0‖, ν,Ω, t∗) > 0 such

that the approximate solution v(t) defined by (5.15) and (5.16) with tn = τn converges

to u(t) for any τ ∈ (0, t∗], i.e.,

lim
t→∞

‖u(t)− v(t)‖ = 0.
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5.3 Stochastic dynamical models

While our theory does not currently address stochastic model dynamics, we review

existing analyses to guide future extensions of our theory to data assimilation problems

with stochastic model dynamics. For the stochastic model dynamics (3.1) and (3.3),

the kinetic energy principle (2.17) can be extended as shown in [83, 88], implying the

boundedness of the expectation of the solution.

Assumption 5.24 (Kinetic energy principle). For the discrete-time stochastic dynam-

ics (3.1), there exists λ ∈ (0, 1),K > 0 such that

|Ψ(u)|2 +TrQ ≤ (1− λ)|u|2 +K. (5.17)

For the continuous-time stochastic model dynamics (3.3), we consider the analog of

(2.18) in terms of the infinitesimal generator L associated with (3.3)

L E(u) ≤ −λ′E(u) +K ′, (5.18)

for λ′,K ′ > 0 and E( · ) = | · |2. By the relations between continuous-time and discrete-

time models noted in Remark 3.13, the inequality (5.18) implies that the discrete-time

stochastic dynamics satisfies Assumption 5.24. Assumption 5.24 is confirmed for the

shifted version L63 equation, the L96 equation, and the 2D-NSE in the same manner

as in Section 5.1. These conditions ensure the boundedness of the expectation E[|ut|2].
Unlike the deterministic case, however, we cannot guarantee the boundedness of any

sample path.

On the other hand, to estimate the maximum error growth rate as in Lemma 5.3,

the global Lipschitz condition is imposed, which is a standard assumption for analyzing

SDEs.

Assumption 5.25 (Global Lipschitz condition). For the discrete-time stochastic dy-

namics (3.1), there exists β′ > 0 such that

|Ψ(u)−Ψ(v)| ≤ β′|u− v|, (5.19)

for any u, v ∈ RNu. For the continuous-time stochastic dynamics (3.3), there exists

β > 0 such that

|F(u)−F(v)| ≤ β|u− v|, (5.20)

for any u, v ∈ RNu.

As examples for the dissipative stochastic dynamics, the stochastically perturbed

L63 and L96 equations are considered in [30, 31], satisfying not Assumption 5.25 but

the local Lipschitz condition (Assumption 5.4). In the deterministic case, whether the
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condition is local or global is not a crucial since the trajectory is bounded. For the

stochastic case, the boundedness of the sample path of the stochastically perturbed

L96 equation is only validated numerically as mentioned in [31].

Finally, the non-degeneracy of the model noise plays an essential role in the analysis

of the EnKF for stochastic model dynamics [30, 88], which will be discussed in Section 6

later.

Assumption 5.26 (Non-degeneracy of the model noise). For the state space model

(3.1) and (3.3), the noise is not degenerate, i.e.,

Q � 0. (5.21)
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6. Mathematical analysis of the EnKF

6.1 Basic properties of the EnKF

We first discuss the EnKF in the infinite ensemble limit m → ∞ since the EnKF is

designed to approximate the KF using the Monte Carlo method. The following results

ensure the convergence of the EnKF to the KF as m → ∞ for the linear-Gaussian

system (4.1). This is referred to as the consistency with the KF.

Proposition 6.1 (Consistency with the KF [58, 70]). For the linear-Gaussian system

(4.1), the EnKF converges to the KF. That is to say, let p ∈ [1,∞), for any time step

n ∈ N,

lim
m→∞

E [|vmn −ϖn|p] = 0,

lim
m→∞

E
[
|Pm

n − Pn|pHS

]
= 0,

where vmn and Pm
n are the ensemble mean and the covariance of the EnKF respectively,

ϖn and Pn are the mean and the covariance of the KF.

The consistency remains valid when H and Y are infinite-dimensional Hilbert spaces

[51, 58]. Similarly, in the continuous-time formulation, the EnKBF is consistent with

the KBF [13, 30]. It is important to note that the EnKF and EnKBF do not converge to

the exact filtering distribution unless the system is linear-Gaussian. In contrast to the

consistency with the KF, an analysis with a finite ensemble size m provides a differences

between the PO and ESRF. It is shown that the ESRF produces less error than the PO

method in approximating the mean and covariance of the analysis distribution with a

finite ensemble size m [1].

Secondly, we discuss the EnKF in the infinite time limit n → ∞. The filtering

algorithm is said to be stable if two estimates Vn and V ′
n generated by the algorithm

with the same observations converge to the same solution,

lim
n→∞

|Vn − V ′
n| = 0.

The stability can also be defined in terms of the filtering distribution as

lim
n→∞

d(PVn ,PV ′
n) = 0,

where d( · , · ) is a distance between two probability measures. If the convergence rate

is exponential, i.e., there exist constants C > 0 and γ ∈ (0, 1) such that

d(PVn ,PV ′
n) ≤ Cγn, n ∈ N,

then this property is called the exponential stability (or the geometric ergodicity) of

the filtering algorithm. In the classical theory of filtering, the controllability and the
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observability of the linear-Gaussian system (4.1) ensure the stability of the Kalman filter

[4, 24]. For nonlinear problems, the stability is discussed in various contexts [9, 83]. For

the 3DVar, the exponential stability has been proven for the two-dimensional Navier-

Stokes equations on a torus [17, 15]. The stability of the EnKF has also been established

[88]. We introduce the statement of the exponential stability of the EnKF for the

stochastic model dynamics (3.1) and the linear observation (3.2) with h(u) = Hu.

Proposition 6.2 (Exponential stability of the EnKF [88]). Let Un be the solution

to (3.1) and V
(1)
n , · · · , V (m)

n be the ensemble generated by the EnKF with observations

(3.2) for h(u) = Hu. We consider the coupled process Xn = (Un, V
(1)
n , · · · , V (m)

n ) as

a Markov chain on X = RNu × RNu×m, and P denotes the Markov transition kernel

of the process Xn. Suppose (3.1) satisfies Assumption 5.24 and Assumption 5.26, the

observation noise satisfies 3.1, and that there exist constants λ > 0, K > 0, a positive

function E : X → R such that a sublevel set {E(u) ≤ c} is compact for any c ∈ R and

E[E(Xn)|FX
n−1] ≤ (1− λ)E(Xn−1) +K, n ∈ N.

Then, there exists γ ∈ (0, 1) such that for any µ, ν ∈ M1(X ), there exists C = C(µ, ν) >

0 such that

dTV (P
nµ, Pnν) ≤ Cµ,νγ

n, n ∈ N, (6.1)

where dTV ( · , · ) is the total variation distance.

Proposition 6.2 implies that the initial errors of the EnKF will decay exponentially

in time. While the filter stability is appropriate for the filtering algorithms, it does not

ensure the accurate state estimation by the EnKF.

6.2 Error analysis of the filtering algorithms

We review the error analysis (or accuracy) of the EnKF for the state space model

associated with an evolution equation on a Hilbert space H,

du

dt
= F(u), (6.2)

which is the same as (3.11). Suppose that a unique solution exists for any u0 ∈ H
and it generates a one-parameter semigroup Ψt : H → H for t ≥ 0. As described in

Remark 3.13, we then consider a discrete dynamical system given by

un = Ψ(un−1), n ∈ N, (6.3)

where Ψ = Ψτ for a time interval τ > 0. The Hilbert space Y ⊂ H is the observation

space. The noisy observation yn ∈ Y is obtained by

yn = Hun + ηn, (6.4)

where H ∈ L(H,Y) is a linear observation operator and (ηn)n∈N ⊂ Y is i.i.d. noise

sequence.

55



6.2.1 3DVar

We start with the analysis of the 3DVar algorithm in Definition 4.9.

Proposition 6.3 ([63]). Let dim(H) < ∞ and un be a unique solution to (6.3) with

u0 ∈ Rm. Suppose that the observation noises in (6.4) satisfy

sup
n∈N

|ηn| = ϵ, (6.5)

and that the model covariance of the 3DVar P̂0 is chosen so that (IH−KH)Ψ : RNu →
RNu is globally Lipschitz with a constant θ ∈ (0, 1). Then, for the sequence of the states

(ϖn)n∈N generated by Definition 4.9 with P̂0, there exists c > 0 such that

lim sup
n→∞

|ϖn − un| ≤
c

1− θ
ϵ. (6.6)

Proof. We review the proof in [63] to explain the essence of the error analysis of data

assimilation algorithms for nonlinear dynamical systems. From (4.12) and (4.13), using

(6.4) gives

ϖn = ϖ̂n +K(yn −Hϖ̂n) = (IH −KH)Ψ(ϖn−1) +KHun +Kηn.

From (6.3), we also have

un = (IH −KH)Ψ(un−1) +KHΨ(un−1).

By subtracting both sides of these equalities, applying the triangle inequality, and

letting en = ϖn − un, we obtain

|en| ≤ |(IH −KH)Ψ(ϖn−1)− (IH −KH)Ψ(un−1)|+ |Kηn| ≤ θ|en−1|+ cϵ,

where we use the global Lipschitz constant θ, the bound of the observation noise ϵ, and

c = |K|L. When we apply the inequality successively, we have

|en| = θn|en−1|+ cϵ
1− θn

1− θ
→ cϵ

1− θ
(n → ∞).

Remark 6.4. Similarly, we can obtain the error bound of E[|en|2] if the observation

noises (ηn)n∈N satisfy Assumption 3.1.

Proposition 6.3 requires that the global Lipschitz constant of the nonlinear map

(IH − KH)Ψ is less than 1. The combination of the following two conditions is a

sufficient condition.

(1) The model dynamics Ψ is global Lipschitz continuous with a constant β′ > 0 as

in Assumption 5.25.
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(2) The error contraction in the analysis step is estimated by |IH −KH|L < β′−1.

The first condition is common in many analyses. For the second condition, from (4.7),

we have

|IH −KH|L = |(IH + P̂nH
∗R−1H)−1|L.

Assuming full observation (Assumption 3.2) and choosing P̂n = P0 = α2IH in the

3DVar, we have

|(IH + P̂nH
∗R−1H)−1|L = |(IH + α2r−2IH)

−1|L =
r2

r2 + α2
. (6.7)

Thus, for any β′ > 1, we can achieve |IH − KH|L < β′−1 by taking sufficiently large

α > 0.

The observation matrix H is not full-rank when we consider partial observations.

Hence, we cannot use this approach since it follows that |IH−KH|L ≥ 1 if KerH 6= {0}.
In general, we have the following lemma.

Lemma 6.5. Let H and Y be Hilbert spaces. If P̂nH
∗R−1H ∈ L(H) is not full-rank,

then

|IH −KH|L = |(IH + P̂nH
∗R−1H)−1|L ≥ 1.

Proof. By assumption, there is u ∈ H such that u 6= 0 and P̂nH
∗R−1Hu = 0. Hence,

we get (IH + P̂nH
∗R−1H)−1u = u. This implies the conclusion.

The error bounds of the 3DVar are obtained for the dissipative dynamical systems

introduced in Section 5 with partial observations. The proofs are similar to that for the

discrete and continuous data assimilation in Section 5.2. Moreover, similar results also

hold for the continuous-time formulation of the 3DVar. The results are summarized in

Table 1.

Algorithm \ Model L63 L96 2D-NSE

3DVar [61] [62] [17]

Continuous-time 3DVar [61] [62] [15]

Table 1: References of the accuracy results of the 3DVar with partial observations.

6.2.2 PO method

We have two issues when considering the error bound of the EnKF.

(i-1) In the EnKF, we want to estimate the Lipschitz constant L > 0 such that

|un − v̂n| ≤ L|un−1 − vn−1|.

However, we cannot apply Lemma 5.3 since Ψ(vn−1) 6= v̂n if Ψ is nonlinear.
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(i-2) In contrast to the 3DVar, the prediction covariance P̂n is not trivial. Therefore,

it is difficult to estimate |IH + P̂nH
∗R−1H|L even when the full observation is

considered.

The following lemma provides an estimate of the error contraction in the EnKF.

Lemma 6.6. Suppose Assumption 3.2 holds. Then, the prediction covariance P̂n in

the EnKF satisfies the following inequality

|IH −KnH|L = |(IH + r−2P̂n)
−1|L ≤ 1.

Proof. Since P̂n � 0 by definition, the result follows as a consequence of Lemma 2.3

and Lemma 2.19.

Kelly et al. [54] consider the error estimate of the state of each ensemble member

by defining e
(k)
n = v

(k)
n − un for k = 1, . . . ,m. They estimate the error growth for each

member using Lemma 5.3 in the same manner as the 3DVar to avoid the issue (i-1).

They first prove the well-posedness of the PO method based on Lemma 6.6, which

implies that the error does not blow up in finite-time.

Proposition 6.7 (Well-posedness of the PO method, modified [54]). Let Assump-

tion 5.1 and Assumption 5.2 for the model dynamics (6.2), and Assumption 3.1 and

Assumption 3.2 for the observation (6.4) hold. Let un be the solution to (6.3) with

u0 ∈ B(ρ), and let Vn be generated by the PO method in Definition 4.10. Then, we

have

E
[
|e(k)n |2

]
≤ e2βτnE

[
|e(k)0 |2

]
+ 2mr2

e2βτn − 1

e2βτ − 1
(6.8)

for k = 1, . . . ,m and n ∈ N.

Proposition 6.7 does not ensure a uniform-in-time error bound when the model

dynamics is chaotic, i.e., β > 0. Hence, they apply additive inflation as described in

Definition 4.19. For the full observation with Assumption 3.2, we get the estimate for

the additively inflated covariance P̂α
n as (6.7).

|(IH + P̂α
nH

∗R−1H)−1|L = |(IH + r−2(P̂n + α2IH))
−1|L

≤ |(IH + α2r−2IH)
−1|L =

r2

r2 + α2
.

This bound plays a significant role in the error estimate of the PO method with additive

inflation, which is stated as follows.

Proposition 6.8 (Accuracy of the PO method with the additive inflation, modified

[54]). Let Assumptions 5.1 and 5.2 for the model dynamics (6.2), and Assumptions 3.1

and 3.2 for the observation (6.4) hold. Let un be the solution to (6.3) with u0 ∈ B(ρ)
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and let Vn be generated by the PO method in Definition 4.10 with the additive inflation

in Definition 4.19 for α ≥ 0. Define θ = (1 + α2

r2
)−2e2βh < 1. Then, we have

E
[
|e(k)n |2

]
≤ θnE

[
|e(k)0 |2

]
+ 2mr2

1− θn

1− θ
(6.9)

for k = 1, . . . ,m and n ∈ N. In particular, if θ < 1 then

lim
n→∞

E
[
|e(k)n |2

]
≤ 2mr2

1− θ
.

Remark 6.9. Proposition 6.7 and Proposition 6.8 hold with Assumption 3.11 instead

of Assumption 3.1 owing to the following lemma.

Lemma 6.10. Let H be a Hilbert space, η ∼ N (0, R̃), R̃ ∈ Lsa(H), R̃ � 0,Tr R̃ <

∞, R̂ � r2IH for r > 0. The operator P : H → H is an orthogonal projection with

dim(P(H)) < ∞. Then,

E[|Pη|2] ≤ dim(P(H))r2.

Proof. Let NP = dim(P(H)). Then, we have Pη ∼ N (0,PR̃P) and

E[|Pη|2] = Tr(PR̃P) ≤ Tr(P(r2IH)P) = r2Tr(P) = NPr
2.

Next, we consider the continuous-time formulation of the EnKF, the EnKBF defined

in Definition 4.25, in a finite-dimensional state space H = RNu and a finite-dimensional

observation space Y = RNy . The uniform-in-time error bound is also obtained for the

EnKBF with full observations and small noises.

Proposition 6.11 (Accuracy of the EnKBF [30]). Let Assumptions 5.25, 5.26 for

the stochastic model dynamics (3.3), and Assumption 3.2 for the observation (3.4)

hold. Suppose that the observation noise variance r2 is chosen to be sufficiently small.

The initial ensemble V0 ∈ RNu×m is chosen so that the initial ensemble covariance

P0 ∈ RNu×Nu is invertible, and the bounds λmax(P0) ≤ C1r and λmin(P0) ≥ C2r are

satisfied for C1, C2 > 0. Let Ut be the solution to (3.3) and Vt ∈ RNu×m be the ensemble

generated by Definition 4.25. Then, we have

lim
t→∞

E[|Ut − vt|2] = O(r). (6.10)

Without any inflation technique, this result holds owing to the non-degeneracy of

the model noise (Assumption 5.26).
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7. Error analysis of the ESRF

7.1 Well-posedness of the ESRF

We consider the state space model given by (6.2)-(6.4) in Section 6.2. Let the ensemble

of state estimation errors be defined as En = [e
(k)
n ]mk=1 ∈ Hm and let Fn be the σ-

algebra generated by initial uncertainties in V0 and the observation noise sequence

(ηk)
n
k=1 for n ∈ N. We establish the well-posedness of the ETKF.

Theorem 7.1 (Well-posedness of the ETKF [82]). Suppose that Assumption 5.1 and

Assumption 5.4 are satisfied by the model dynamics (6.2), and Assumption 3.2 and

Assumption 3.11 are satisfied by the observation (6.4). Let un be the solution to (6.3)

with u0 ∈ B(ρ), and let Vn be generated by the ETKF (Definition 4.13). Then, we have

the following upper bound.

E
[
|En|22

]
≤ e2βhnE

[
|E0|22

]
+ (m− 1)r2

e2βhn − 1

e2βh − 1
, n ∈ N. (7.1)

We need the following lemma for the analysis step of the ETKF in Definition 4.13,

and it is a variant of Proposition 3.2 in [54] for the PO method.

Lemma 7.1. The following holds for the transform matrix

dVn1
∗ = dV̂n1

∗ = 0 ∈ H, (7.2)

Tn1
∗ = 1∗. (7.3)

Moreover, the ensembles satisfy the relation

(IH + P̂nH
∗R−1H)Vn = V̂nT

−1
n + P̂nH

∗R−1yn1. (7.4)

Proof. We omit the time index n in the following proofs for simplicity since n ∈ N is

fixed. The equality (2.6) in Lemma 2.16 yields

S−11∗ =

(
Im +

1

m− 1
dV ∗H∗R−1HdV

)
1∗ = 1∗,

where S = T 2 defined by (4.24). Hence, we have

S1∗ = 1∗. (7.5)

Then, we prove that 1∗ is also an eigenvector of T = S
1
2 with an eigenvalue 1. Since S

is symmetric, it is diagonalized as S = UDU∗ with a unitary matrix U ∈ Rm×m and a

diagonal matrix D ∈ Rm×m. Then, (7.5) is equivalent to

S1∗ = 1∗ ⇔ UDU∗1∗ = 1∗ ⇔ DU∗1∗ = U∗1∗.
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Putting u = U∗1∗ = (u1, · · · , um)∗ ∈ Rm and dj > 0 as j th diagonal element of D for

j = 1, . . . ,m, we rewrite the last equality for each component as

djuj = uj , j = 1, . . . ,m.

This implies that dj = 1 or uj = 0 for each j = 1, . . . ,m. Hence, we have

(dj)
1
2uj = uj , j = 1, . . . ,m,

and D
1
2U∗1∗ = U∗1∗. By definition, T is written as T = UD

1
2U∗, and this yields

T1∗ = 1∗, which is (7.3).

The last equality (7.4) is shown as follows. From (4.23), we have

(IH + P̂H∗R−1H)v = v̂ + P̂H∗R−1y ∈ H.

By using P̂ = Covm(V̂ ), (4.24) and S = T 2, we obtain

(IH + P̂H∗R−1H)dV = (IH + P̂H∗R−1H)dV̂ T = dV̂

[
Im +

1

m− 1
dV̂ ∗H∗R−1HdV̂

]
T

= dV̂ S−1T = dV̂ T−1 ∈ Hm.

Finally, owing to (4.23) and v̂1T−1 = v̂1,

(IH + P̂H∗R−1H)V = (IH + P̂H∗R−1H)(v1+ dV ) = v̂1+ P̂H∗R−1y1+ dV̂ T−1

= v̂1T−1 + dV̂ T−1 + P̂H∗R−1y1 = V̂ T−1 + P̂H∗R−1y1.

This finishes the proof.

(Proof of Theorem 7.1). From Assumption 3.2, the relation (7.4) is equivalent to

(IH + r−2P̂n)Vn = V̂nT
−1
n + r−2P̂nyn1. (7.6)

Let Un = un1 ∈ Hm. From (7.3), we have Un = UnT
−1
n . Hence,

(IH + r−2P̂n)Un = Un + r−2P̂nUn = UnT
−1
n + r−2P̂nUn. (7.7)

Setting Ên = V̂n −Un and subtracting (7.7) from (7.6) yields

(IH + r−2P̂n)En = ÊnT
−1
n + r−2P̂n(yn − un)1 = ÊnT

−1
n + r−2P̂nηn1.

Owing to r−2P̂n � 0, IH + r−2P̂n is invertible. Hence, multiplying (IH + r−2P̂n)
−1, we

obtain

En = (IH + r−2P̂n)
−1ÊnT

−1
n + (IH + r−2P̂n)

−1r−2P̂nηn1.
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Let us divide En into the following two terms and evaluate them separately.

R1 = (IH + r−2P̂n)
−1ÊnT

−1
n , (7.8)

R2 = (IH + r−2P̂n)
−1r−2P̂nηn1. (7.9)

Here, the dimension of Ran(Pn) is m − 1 at most since P̂n consists of m vectors

with one constraint. Let Πn be the projection from H to Ran(Pn), and we have R2 =

(IH+ r−2P̂n)
−1r−2P̂nΠnηn1. From (2.10), we have (IH+ r−2P̂n)

−1r−2P̂n � I owing to

r−2P̂n � 0. This leads to

|R2|22 ≤ |Πnηn1|22 = |Πnηn|2. (7.10)

Let J = IH + r−2P̂n. Then we have J, J−1 ∈ Lsa(H) and |J−1|L ≤ 1. We obtain

R1R
∗
1 = J−1ÊnT

−2
n Ê∗

nJ
−1.

Considering the relations dÊn = dV̂n and ÊndV̂
∗
n = dV̂nÊ

∗
n = dV̂ndV̂

∗
n , we have

ÊnT
−2
n Ê∗

n = Ên

[
Im +

r−2

m− 1
dV̂ ∗

n dV̂n

]
Ê∗

n

= ên1(ên1)
∗ + dV̂ndV̂

∗
n + dV̂ndV̂

∗
n r

−2P̂n

= ên1(ên1)
∗ + dV̂ndV̂

∗
n J,

where ên = v̂n − un. Since J−1 is self-adjoint, we have

R1R
∗
1 = J−1ên1(ên1)

∗J−1 + J−1dV̂ndV̂
∗
n = J−1ên1(J

−1ên1)
∗ + J−1dV̂ndV̂

∗
n .

Then, |R1|22 is bounded by

|R1|22 = |J−1ên|2 +
1

m
Tr(J−1dV̂ndV̂

∗
n ) ≤ |J−1|2L|ên|2 + |J−1|L

1

m
Tr(dV̂ndV̂

∗
n )

≤ |ên|2 + |dV̂n|22 = |Ên|22.

The first inequality follows from Lemma 2.12, and the second inequality holds owing to

|J−1|L ≤ 1. From this with Lemma 5.3, we obtain the upper bound of |R1|2 as follows.

|R1|22 ≤ |Ên|22 ≤ e2βh|En−1|22. (7.11)

Since R1 and R2 are conditionally independent under Fn−1, it follows from (7.10)

and (7.11) that

En−1[|En|22] = En−1[|R1|22] + En−1[|R2|22] ≤ e2βhEn−1[|En−1|22] + En−1[|Πnηn|2]
= e2βhEn−1[|En−1|22] + (m− 1)r2,

where the conditional expectation is denoted by En−1[ · ] := E[ · | Fn−1]. Taking the

expectation yields

E[|En|22] ≤ e2βhE[|En−1|22] + (m− 1)r2

since the conditional expectation satisfies E[En−1[ · ]] = E[ · ] in general. Applying this

inequality repeatedly, we obtain (7.1).
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We also have the well-posedness of the EAKF.

Theorem 7.2 (Well-posedness of the EAKF). Under the same conditions as in Theo-

rem 7.1, for Vn generated by the EAKF (Definition 4.16), the same error bound as in

(7.1) holds.

Proof. The proof is the same as that for the ETKF except for the estimate of R1. As

before, we omit the time index n in the following proofs for simplicity since n ∈ N is

fixed. It is clear that

u = (IH −K)u+Ku. (7.12)

In the EAKF, the analysis ensemble is given by

V = v1+ dV =
[
(IH −K)v̂ +Ky

]
1+AdV̂ . (7.13)

By subtracting (7.13) from (7.12), we have

E = (IH −K)ê1+AdV̂ +K(y − u)1. (7.14)

Recalling Lemma 4.4, we have (IH−K)−1 = IH+ r−2P̂ = J . In addition, Lemma 4.14

yields K = (IH − K)r−2P̂ = (IH + r−2P̂ )−1r−2P̂ . Therefore, the equality (7.14)

becomes

E = J−1ê1+AdV̂ + (IH + r−2P̂ )−1r−2P̂ η1.

We divide the ensemble of the error E as E = R1 +R2 with

R1 = J−1ê1+AdV̂ ,

R2 = (IH + r−2P̂ )−1r−2P̂ η1.

Note that R2 is the same as in the ETKF. Since J = (IH −K)−1, it follows from the

definition of the adjustment operator (4.27) that

AdV̂ (AdV̂ )∗ = (m− 1)(IH −K)P̂ = J−1dV̂ dV̂ ∗.

Considering dV̂ 1∗ = 0, we have

R1R
∗
1 = J−1ê1(J−1ê1)∗ +AdV̂ dV̂ ∗A∗ = J−1ê1(J−1ê1)∗ + J−1dV̂ dV̂ ∗.

This equal to R1R
∗
1 in the proof for the ETKF.

Remark 7.2. Theorem 7.1 and Theorem 7.2 ensure the accuracy of the ESRF in a

short time interval. Additionally, these results hold even when H is infinite-dimensional

and they are analogous to Proposition 6.7 for the PO method. Compared to Proposi-

tion 6.7, a constant coefficient 2 does not appear in the second term of the upper bound

(7.1) in Theorem 7.1 and Theorem 7.2, indicating that the PO method is more influ-

enced by the variance of observation noises due to its stochastic implementation.
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7.2 Uniform-in-time error bound of the ESRF

We estimate the uniform-in-time error bound of the analysis error en = vn − un. Due

to the issue (i-1) in Section 6.2.2, we need to use Lemma 5.5 instead of Lemma 5.3 to

estimate the error growth for the ensemble mean.

Theorem 7.3 (Accuracy of the ETKF with the multiplicative inflation [82]). Suppose

dim(H) = Nu < ∞. Assumption 5.1 and Assumption 5.4 are satisfied by the model

dynamics (6.2), and Assumption 3.11 and Assumption 3.2 are satisfied by the obser-

vation (6.4). Let un be the solution to (6.3) with u0 ∈ B(ρ), and let Vn be generated

by the ETKF in Definition 4.13 with the multiplicative inflation in Definition 4.20 for

α ≥ 1. In addition, suppose that the ensemble size m ∈ N is large enough to satisfy

λmin(P0) ≥ λ0 with λ0 > 0, and that v
(k)
n ∈ B(ρ) for k = 1, . . . ,m and n ∈ N. Then,

for any ϵ > 0, there exists α0 = α0(ρ, β,m, λ0, τ, r, ϵ) ≥ 1 such that the following hold

for any α ≥ α0.

(i) There exists λ∗ = λ∗(ρ, β,m, λ0, τ, r, α) > 0 such that λmin(P̂n) > λ∗ for all

n ∈ N.

(ii) For n ∈ N and θ = (1 + α2

r2
λ∗)

−2e2(β+ϵ)τ , we have

E[|en|2] ≤ θn(E[|e0|2] +D) +Nur
2 1− θn

1− θ
+

(
(1− θn)(1−Θ)

1− θ
− 1

)
D, (7.15)

where D = β2ρ2

(β+ϵ)ϵ and Θ = (1 +
α2
0

r2
λ∗)

−2. Moreover, if θ < 1, we have

lim
n→∞

E[|en|2] ≤
Nur

2

1− θ
+

(
1−Θ

1− θ
− 1

)
D. (7.16)

Proof. For simplicity, we write λ̂min
n = λmin(P̂n) and λmin

n = λmin(Pn). We first

estimate the change of the eigenvalue from λmin
n−1 to λ̂min

n in the prediction step. To this

end, we interpolate the prediction step as v̂
(k)
t = Ψt(v

(k)
n−1), P̂t =

1
m−1

∑m
k=1(v̂

(k)
t − v̂t)⊗

(v̂
(k)
t − v̂t), λt = λmin(P̂t) for t ∈ [0, τ ]. Note that v̂

(k)
t ∈ B(ρ) from Assumption 5.1.

The differentiation of P̂t with respect to t yields

d

dt
P̂t =

1

m− 1

m∑
k=1

(F (v̂
(k)
t )− F t)⊗ (v̂

(k)
t − v̂t) + (v̂

(k)
t − v̂t)⊗ (F (v̂

(k)
t )− F t), (7.17)

where F t =
1
m

∑m
k=1 F (v̂

(k)
t ). Owing to 1

m

∑m
k=1 v̂

(k)
t − v̂t = 0, we have

d

dt
P̂t =

1

m− 1

m∑
k=1

(F (v̂
(k)
t )− F (v̂t))⊗ (v̂

(k)
t − v̂t) + (v̂

(k)
t − v̂t)⊗ (F (v̂

(k)
t )− F (v̂t)).

(7.18)

64



It follows from Lemma 2.15 that, for t ∈ (0, τ), there exists w = wt ∈ H with |w| = 1

such that

d

dt
λt =

〈
w,

d

dt
P̂tw

〉
.

To derive the lower bound of d
dtλt, we consider the absolute value of the right-hand side

of (7.18). Owing to |w| = 1 and Assumption 5.4, we have∣∣∣∣〈w, ddtP̂tw

〉∣∣∣∣ ≤
∣∣∣∣∣ 2

m− 1

m∑
k=1

〈
F (v̂

(k)
t )− F (v̂t), w

〉〈
v̂
(k)
t − v̂t, w

〉∣∣∣∣∣
≤ 2

(
1

m− 1

m∑
k=1

〈
F (v̂

(k)
t )− F (v̂t), w

〉2) 1
2
(

1

m− 1

m∑
k=1

〈
v̂
(k)
t − v̂t, w

〉2) 1
2

≤ β
1

m− 1

m∑
k=1

|v̂(k)t − v̂t|2 ≤ 8
m

m− 1
βρ2.

The last inequality holds owing to v̂
(k)
t ∈ B(ρ) and the assumption of Theorem 7.3.

Hence, it follows that

d

dt
λt ≥ −a

with a = 8 m
m−1βρ

2 > 0. Integrating it from t = 0 to τ , we have

λ̂min
n = λτ ≥ e−aτλ0 = e−aτλmin

n−1. (7.19)

The next step is to address the change of the eigenvalue in the analysis step. From

Assumption 3.2 and (4.36), we have

Pn−1 =
α2

m− 1
dV̂n−1(Im + α2γ−2P̃n−1)

−1dV̂ ∗
n−1,

where P̃n−1 = 1
m−1dV̂

∗
n−1dV̂n−1 ∈ Rm×m. Next, for fixed n ∈ N, we show that the

eigenvectors of P̂n−1 are also the eigenvectors of Pn−1. Indeed, if ϕ ∈ H satisfies

P̂n−1ϕ = λϕ with an eigenvalue λ ≥ 0, we have

P̃n−1dV̂
∗
n−1ϕ =

1

m− 1
dV̂ ∗

n−1dV̂n−1dV̂
∗
n−1 = dV̂ ∗

n−1P̂n−1ϕ = λdV̂ ∗
n−1ϕ.

Hence, it follows that

Pn−1ϕ =
α2

m− 1
dV̂n−1(Im + α2γ−2P̃n−1)

−1dV̂ ∗
n−1ϕ

=
α2

m− 1
dV̂n−1

1

1 + α2γ−2λ
dV̂ ∗

n−1ϕ

=
α2

1 + α2γ−2λ
P̂n−1ϕ =

α2λ

1 + α2γ−2λ
ϕ.
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Since the map λ 7→ α2λ
1+α2γ−2λ

is monotonically increasing, we obtain the relation between

the minimum eigenvalues

λmin
n−1 =

α2λ̂min
n−1

1 + α2

γ2 λ̂
min
n−1

. (7.20)

Combining (7.19) and (7.20), we obtain the inequality for λ̂min
n .

λ̂min
n ≥

e−aτα2λ̂min
n−1

1 + α2

γ2 λ̂
min
n−1

.

We now consider the following discrete dynamical system of the eigenvalue

λn+1 = g(λn), λ0 > 0,

where g(λ) = e−aτα2λ

1+α2

γ2
λ
. Note that λn > 0 for n ∈ N ∪ {0}. Let λ∞ = γ2

α2 (e
−aτα2 − 1)

be a fixed point of the dynamical system, i.e., λ∞ = g(λ∞). Then, if e−aτα2 > 1, the

ratio g(λ)
λ satisfies g(λ)

λ ≥ 1 (resp. < 1) for λ ≤ λ∞ (resp. λ > λ∞). Hence, we have

limn→∞ λn = λ∞. On the other hand, limn→∞ λn = 0 if e−aτα2 ≤ 1. Therefore, we

obtain the lower bound

λ̂min
n ≥ min

{
λ̂min
0 ,

γ2

α2
(e−aτα2 − 1)

}
= min

{
e−aτλ0,

γ2

α2
(e−aτα2 − 1)

}
= λ∗ > 0

(7.21)

if and only if e−aτα2 > 1.

Finally, we establish the recurrence inequality for E[|en|2]. Owing to Assump-

tion 3.2, the equality (4.35) is reduced to

(I + α2γ−2P̂n)vn = v̂n + α2γ−2P̂nyn.

As in the proof of Theorem 7.1, the error is divided into the two parts as en = r1 + r2,

where

r1 = (IH + α2γ−2P̂n)
−1ên, (7.22)

r2 = (IH + α2γ−2P̂n)
−1α2γ−2P̂n(yn − un), (7.23)

and ên = v̂n − un. From (2.10), we have |(IH + α2γ−2P̂n)
−1α2γ−2P̂n|L ≤ 1. We thus

obtain

|r2| ≤ |yn − un| = |ηn|. (7.24)

From this lower bound of the minimum eigenvalue (7.21), we have |(IH+α2γ−2P̂n)
−1|L ≤

(1 + α2

γ2 λ∗)
−1. Hence,

|r1|2 ≤
1

(1 + α2

γ2 λ∗)2
|ên|2 ≤

e2(β+ϵ)h

(1 + α2

γ2 λ∗)2
(|en−1|2 +D)− D

(1 + α2

γ2 λ∗)2
, (7.25)
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where Lemma 5.5 is used for ϵ > 0.

As in the proof of Theorem 7.1, we compute the expectations of r1 and r2 separately

E[|en|2] = E[|r1|2] + E[|r2|2] ≤ E
[
|r1|2

]
+ E[|ηn|2] = E

[
|r1|2

]
+Nuγ

2

≤ e2(β+ϵ)h

(1 + α2

γ2 λ∗)2
(E[|en−1|2] +D)− D

(1 + α2

γ2 λ∗)2
+Nuγ

2

≤ θ(E[|en−1|2] +D)− D

(1 + α2

γ2 λ∗)2
+Nuγ

2 = θ(E[|en−1|2] +D) + δ,

where δ = Nuγ
2 −ΘD. This leads to

E[|en|2] +D ≤ θ(E[|en−1|2] +D) + δ +D.

Applying this inequality repeatedly, we finally have

E[|en|2] ≤ θn(E[|e0|2] +D) + (δ +D)
1− θn

1− θ
−D

= θn(E[|e0|2] +D) +
(
Nuγ

2 + (1−Θ)D
) 1− θn

1− θ
−D

= θn(E[|e0|2] +D) +Nuγ
2 1− θn

1− θ
+

(
(1− θn)(1−Θ)

1− θ
− 1

)
D.

Moreover, if θ < 1, (7.16) holds in the limit of n → ∞.

Similarly, we obtain the error bound of the EAKF.

Theorem 7.4 (Accuracy of the EAKF with multiplicative inflation). Suppose that the

same assumption as Theorem 7.3 for Vn generated by the EAKF in Definition 4.16

with the multiplicative inflation in Definition 4.20 for α ≥ 1. Then, the same error

bound as (7.15) and (7.16) hold.

Proof. The proof is same as that of Theorem 7.3 since it only uses the relationships in

Remark 4.22:

(IH + α2P̂nH
∗R−1H)vn = v̂n + α2P̂nH

∗R−1yn,

Pn =
α2

m− 1
dV̂n(Im + α2dV̂ ∗

n H
∗R−1HdV̂n)

−1dV̂ ∗
n .

These are shared with the ETKF and EAKF.

Luo and Hoteit [68] derive both the upper and lower bounds for the multiplicative

inflation parameter α, and they ensure the residual error ern = yn−Hvn remains within

a prescribed interval. The bound for α is adaptively computed using the prediction

residual error êrn = yn−Hv̂n before the analysis step at each time. They do not impose

any assumptions on the model dynamics. However, their theory only guarantees the
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bound for the residual error ern, not the actual error en = un − vn. In contrast, the

present results of the accuracy ensure the bound for the actual error en, provided that

the constants ρ and β for the model dynamics are estimated.

Compared to the additive inflation in Proposition 6.8, the multiplicative inflation

in Theorem 7.3 and Theorem 7.4 inflates the spread of the ensemble. As a result, we

cannot obtain the error bound for all members in the analysis ensemble Vn. Instead, we

establish the error bound for the analysis mean vn using Lemma 5.5, which introduces

the additional constant D in (7.16). However, the additional term becomes negligible

and the filtering error tend to be the order of the observation noise in a certain limit.

Corollary 7.3. Under the same assumptions of Theorem 7.3, in the accurate observa-

tion limit (i.e., r → 0), the filtering error (7.16) satisfies

lim
n→∞

E[|en|2] = O(r2).

Proof. It is clear that Θ =
(

r2

r2+α2λ∗

)2
= O(r4) and θ = O(r4). Then, we have

1−Θ

1− θ
− 1 = (1−Θ)(1 + θ +O(Θ2))− 1 = 1−Θ+ θ +O(Θ2)− 1

= Θ(e2(β+ϵ)h − 1) +O(Θ2) = O(r4).

Therefore, it follows that

lim
n→∞

E[|en|2] =
mr2

1− θ
+

(
1−Θ

1− θ
− 1

)
D = mr2(1 +O(r4)) +O(r4) = O(r2).

7.3 Numerical examples

The Observing System Simulation Experiment (OSSE) or twin experiment is a standard

process used to validate data assimilation algorithms numerically. It uses only synthetic

data generated directly from the numerical model rather than real world observations

to avoid issues related to the imperfect models and unknown measurement noises.

Definition 7.4 (OSSE). The standard process of the OSSE is as follows.

(1) Compute the true solution (un)
N
n=1 to (6.2) numerically.

(2) Generate random observations (yn)
N
n=1 as in (6.4).

(3) Assimilate the observed data (yn)
N
n=1 and obtain the analysis states (ϖn)

N
n=1 using

a data assimilation algorithm.

(4) Compute the error between un and ϖn for n = 1, . . . , N .
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In the EnKF, the analysis state is the ensemble mean, i.e., ϖn = vn. We use the

square error (SE) at time n,

SEn = |ϖn − un|2. (7.26)

This is used in the error bounds (7.15) and (7.16) of Theorem 7.3. The root mean

square error (RMSE) at time n is also used

RMSEn =
|ϖn − un|√

Nu
=

√
SEn

Nu
, (7.27)

which is normalized by the dimension of the model dynamics. These errors contain

the numerical error as well as the state estimation error since we use a numerical

approximation of the true solution in the step (1) of Definition 7.4.

Let us consider the L96 equation (5.6) as an example of the OSSE. We set J = 40

and f = 8. With these parameters, the L96 equation can exhibit chaotic behavior

since we have β = 2ρ − 1 = 2
√
2Jf − 1 > 0 in (5.1) of Assumption 5.2 as stated

in Proposition 5.9. We first compute the solution u(t) up to T = N∆t by using the

fourth-order Runge-Kutta method with a time step size ∆t = 0.01, and N = 14400

time steps. The initial condition is set as

u0 = (f ∗ 1.001, f, · · · , f)∗ ∈ RJ

= (8.008, 8.0, · · · , 8.0)∗ ∈ R40.

The evolution of the first component u1(t) of the solution u(t) for 0 ≤ t ≤ 144 is shown

in Figure 5(a). The projection onto the first two components (u1(t), u2(t)) ∈ R2 is

shown in Figure 5(b).

(a)

0 50 100 150

t

−10

−5

0

5

10

u
1

(b)

−10 0 10

u1

−5

0

5

10

u
2

Figure 5: The solution of the L96 equation (5.6) for (J, f) = (40, 8).
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We show the time evolution of the norm |u(t)|/
√
J in Figure 6 to confirm the

boundedness of the solution. The norm quickly decays in the initial stage, which

demonstrates the dissipativeness of the L96 equation. After that, the norm remains

around the value of 4.0 and fluctuates aperiodically, indicating that the trajectory is

bounded.

0 20 40 60 80 100 120 140

t

0

2

4

6

8

|u|
/√

J

Figure 6: The time evolution of the norm |u(t)|/
√
J .

Now, let u(t) and uϵ(t) be two solutions to the L96 equation starting from the initial

states u(0) and uϵ(0) with |uϵ(0) − u(0)|/
√
J ≈ ϵ for a small scale ϵ > 0. We show in

Figure 7 the evolution of the normalized error, |δu(t)|/
√
J , where δu(t) = u(t)− uϵ(t)

and ϵ = 10−4. This indicates that the solution of the L96 equation exhibits sensitivity

to the initial perturbation, showing a chaotic behavior.
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Figure 7: Log plot of the time evolution of the normalized error |δu(t)|/
√
J for ϵ = 10−4.

We apply the ETKF to the L96 equation to validate the analysis in the previous

section. For a time interval τ = 5∆t = 0.05, we approximate the forward map Ψτ

by the numerical solution u(t) computed above. First, we discard the solution up to

t = N0τ with N0 = 1440 so that it falls into an absorbing ball of the L96 equation.

Then, we sample the hidden true states (un)
Nt
n=1 with Nt = 480 as follows:

un = u(nτ +N0τ), n = 1, . . . , Nt.

This process corresponds to the step (1) of the OSSE in Definition 7.4. Second, under

Assumption 3.2 for the observation system (6.4), we generate a time series of observa-

tions (yn)
Nt
n=1 as follows.

yn = un + ηn, ηn ∼ N(0, r2I), n = 1, . . . , Nt,

where the variance of the observation noises is r2 = 0.1. This process corresponds to

the step (2) of the OSSE in Definition 7.4.

In step (3) of the OSSE in Definition 7.4, we apply the ETKF with an ensemble size

m = J + 1. The initial ensemble is given by V0 = [e1, e2, . . . , eJ ,−
∑J

i=1 ei] ∈ RJ×m

for the standard basis ei (i = 1, . . . , J) of RJ so that the assumption λmin(C0) > 0 in

Theorem 7.3 holds. From V0 and (yn)
Nt
n=1, we compute the prediction ensemble (V̂n)

Nt
n=1

and the analysis ensemble (Vn)
Nt
n=1 using the ETKF with the multiplicative covariance

inflation in Definition 4.20 for α = 1.0, 1.1, and 5.0.

The expectation E[SEn] is approximated by averaging over 20 different random

seeds to generate observation noises. Figure 8(a) shows E[SEn] for α = 1.0, 1.1, and 5.0.

We also show the error bound (7.16) for the case when the error growth is sufficiently
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suppressed by the inflation, i.e., θ � 1. In this case, the bound is approximated by Jr2.

In addition, Figure 8(b) shows the minimum eigenvalue of the prediction covariance

λ̂min = λmin(P̂n) for α = 1.0, 1.1, and 5.0. These figures indicate that without the

inflation (α = 1.0), E[SEn] is larger than the theoretical bound (Figure 8(a)), and the

λ̂min ≈ 10−10 is negligibly small compared to the variance of observation noise r2 = 0.1

(Figure 8(b)). On the other hand, a large inflation parameter (α = 5.0) leads to that

λ̂min is bounded below by a value ≈ 10−2, which is about 8 digits larger in magnitude

than that with α = 1.0 (Figure 8(b)). Then, E[SEn] is smaller than or has the same

order with the theoretical bound except at the initial time (Figure 8(a)). This result

supports Theorem 7.3, considering the approximation error of the theoretical bound

and numerical errors. With a relatively small inflation parameter (α = 1.1), E[SEn]

is even smaller than when α = 5.0 although λ̂min still takes a small value. Therefore,

our estimate does not characterize the optimal α. Nevertheless, this numerical result is

consistent with our theory since a large inflation parameter and a lower bound of the

minimum eigenvalues are sufficient conditions to obtain the error bound (7.16).
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Figure 8: Plot of (a) the evolution E[SEn] and (b) Plot of the minimum eigenvalue

λ̂min vs. the observation time step n for the ETKF with the multiplicative inflation

parameter α = 1.0, 1.1, 5.0.

We finally investigate the dependence of the time-averaged SE on the variance of

observation noise r2. Figure 9 shows the log-log plot of the time averaged SE for

α = 1.1, 5.0 vs. r2 with r = 10−5, . . . , 10−1. Here, SE is computed using one seed

for random observations for each parameter pair (r, α). For α = 5.0, the theoretical

estimate SE = O(r2) in Corollary 7.3 is validated.
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Figure 9: The log-log plot of the time averaged SE vs. r2 for the ETKF with multi-

plicative inflation for α = 1.1, 5.0 and r = 10−5, . . . , 10−1.
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8. Summary and future directions

The theoretical aspects of the EnKF have been investigated for dissipative dynamical

systems on Hilbert spaces. Regarding the EnKF, the consistency with the KF, the

exponential stability, and the error bound under ideal conditions have been established.

In particular, the main contribution of this thesis is summarized in the following three

points [82]. First, we prove that the filtering error of the ESRF is bounded for any

finite time, even in an infinite-dimensional state space. Second, with the multiplicative

inflation, we determine the minimum value of the inflation parameter α sufficient to

obtain the uniform-in-time error bound when the state space has a finite dimension.

These are the theoretical extensions of the analysis for the PO method to the case of

the ESRF. Last, the numerical example validates the error bound and demonstrates

that the bound for α may be improved.

We show future directions. First, the accuracy results for the ESRF with multi-

plicative inflation, Theorem 7.3 and Theorem 7.4 can be extended to the case for the

PO method with the multiplicative ensemble inflation (1’) in Definition 4.20. To this

end, we need to estimate the eigenvalues of the ensemble covariance Pn randomly gen-

erated in the analysis step of the PO method. Second, the error analysis of the EnKF

are limited in the case of full observations, which is an unrealistic setting in applica-

tions. We may extend the results for the 3DVar with partial observations in Table 1 to

that for the EnKF. For instance, considering the L63 equation, we conjecture that the

error bound might be obtained for the PO method with the additive inflation using the

partial observation operator (5.14).

Third, we assume that the ensemble size is larger than the state space dimension,

which is another theoretical limitation. In applications of the EnKF, it is usually

unexpected due to the limited computational resources. The dimension reduction in

dynamical systems is necessary to obtain the error bound with a small ensemble. For

instance, the determining modes for the 2D-NSE on a torus define a finite-dimensional

subspace, and partial observations from this subspace can reconstruct the state in

the whole space. Therefore, we could obtain the error bound if an ensemble size is

larger than the dimension of the subspace. Last, this thesis assumes that the exact

time evolution of dynamical models can be approximated without numerical errors, as

discussed in Section 6.2. Therefore, in the future, we should include numerical errors in

the error analysis of data assimilation algorithms by utilizing the theory of numerical

analysis. Relevant topics are addressed in [27] for the discretization of the Bayesian

inverse problem formulated in infinite-dimensional spaces and [76] for the treatment of

imperfect models.
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