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1. Introduction
Introduction to today’s presentation and Hamiltonian Monte Carlo



Introduction

This is intuitive introduction of Hamiltonian Monte Carlo.

Almost all parts of this presentation is from
“A Conceptual Introduction to Hamiltonian Monte Carlo”, Michael Betancourt .



Motivation
Computing expectations with respect to the posterior distribution in Bayesian
inference
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2. Preliminary
Preparing to constructing Hamiltonian Monte Carlo



Notation

ü Sample space ! = ℝ$.
ü Denote % > 0, if M is symmetric positive definite

matrix.
ü ( 0, Σ ; for mean zero covariance Σ Gaussian

distribution.
ü + ~ -; + is distributed by -.
ü Use “≡” for definition



Monte Carlo Method
Approximate distribution !(#) with large samples
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Sampling Problem

How do we make efficient sampling from given target

distribution ! " ?

Define sample problem we are interested in



Markov Chain Monte Carlo: MCMC

Desired transition kernel ! "# " to satisfy reversibility

Construct Markov chain that converges to target distribution by Random proposal
and Acceptance

$ " ! "# " = $ "′ ! " "′



Random Walk Metropolis: RWM

One simple implementation of
Metropolis-Hasting algorithm

ü Require: target ! "

ü proposal covariance Σ > 0

1. Random proposal

2. Accept

given q', draw q()*( ~ N q', Σ

accept q'./ = q()*(with probability

min{1, 6(89:;9)6(8=)
}



Issue of MCMC

Poor performance with high dimension and complex

target distributions



Hamilton Dynamics

Hamilton equation on phase
space

ü preserve volume in phase

space(Liouville’s Theorem)

ü preserve total energy in phase

space, which is Hamiltonian

ü time reversal symmetry
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3. Hamiltonian Monte Carlo
Constructing Hamiltonian Monte Carlo



Hamiltonian Monte Carlo: HMC

A. One approach is using geometric information of

target and constructing conservative transition kernel

by Hamilton flow.

Q. How do we make efficient sampling from given target distribution !" # ?



Information of Gradient

1. Consider !" # = %&"((), where . # ≡ −log(!" # )

2. But gradient 45
46 pulls us the mode of density!

3. → Need to introduce momentum :

Using geometric information of target density



Expand Sample Space

1. Expand to phase space ! → !, $ with $
2. Choose conditional distribution %&($|!)
3. Lift %* ! to %+ !, $ ≡ %& $|! %* !

Expand sample space to phase space,
We can always gain sample q by projection(marginalization).



Choice of Kinetic Energy

1. Choose Kinetic Energy !(#, %)
2. Conditional distribution of momentum determined by

'( % # ≡ *+( ,,-

To define conditional distribution of momentum '( % # , a user choose kinetic energy. 

In simple case, let ! #, % = /
0 %

12+/%.



Hamiltonian

1. # $, & ≡ ( $, & + *($)

2. ./ $, & ≡ .0 &|$ .2 $ = 45/(6,7)

Hamiltonian # and canonical distribution ./ are defined as below.



Symplectic integrator

Scheme exactly preserving
volume

ü Assume: ! ", $ ≡ &
' $

()*&$
with Mass matrix ) > 0,

ü -(") is differentiable.

ü Require: step size 0 > 0
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89 "1, $1 ≡ "12&, $12&



Numerical Hamilton Flow

1. #$ %&, (& ≡ %&*+, (&*+
2. #$, ≡ #$ ∘ ⋯ ∘ #$ for integer /.

Define numerical Hamilton flow by symplectic integrator on previous page and
define / times composition



HMC Algorithm

Hybrid of deterministic and
stochastic transitions

ü ! ", $ ≡
&

'
$()*&$ + ,(")

ü Require: ) > 0, 1 ∈ ℕ, 4 > 0 

1. Energy Lift

2. Hamilton flow

3. Accept

given "5, draw $5 ~ 7 0,)

"89:8, $89:8 = <=
>("5, $5)

accept "5?& = "@AB@with probability
min{1, exp(!("5, $5) − !("89:8, −$89:8))}



Conceptual Animation of HMC Algorithm
1. Energy Lift
2. Hamilton flow
3. (Accept)
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Advantage of Hamiltonian Monte Carlo

ü Rich Theoretical Support
effective for wider class of target than non-gradient method

ü Computational Efficiency
Fast exploration and large acceptance probability



4. Demonstration
Demonstration of efficient Hamiltonian Monte Carlo compared with Random

Walk Metropolis



Strongly Nonlinear Banana Gaussian

Test Target distribution is

Strongly banana gaussian

ü Sample space ! = ℝ$

ü target %& '(, '$ = * ∘ ,-./.( '(, '$
where

ü * '(, '$ = 12
3
45563
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4

ü ,-: '(, '$ ⟼ ('(, '$ + ;<=> − 100B)



RWM vs HMC after 10 iterations

RWM: Σ = 2$ HMC: % = 0.5, * = 10,, = $



RWM vs HMC after 100 iterations

RWM: Σ = 2$ HMC: % = 0.5, * = 10,, = $



RWM vs HMC after 1000 iterations

RWM: Σ = 2$ HMC: % = 0.5, * = 10,, = $



Stats*

RWM: Σ = 2$ HMC: % = 0.5, * = 10,, = $

Try Sample Time*(ms) Acceptance  
Probability

10 3.02 0.300
100 25.8 0.260
1000 179 0.288

Try Sample Time*(ms) Acceptance  
Probability

10 7.43 0.900
100 34.3 0.970
1000 474 0.940

*Not guaranteed value, just a reference.
*Time is measured by jupyter magic command `%%time`.



5. Discussion
Discussion about future work or application of Hamiltonian Monte Carlo



Future work

ü Studying mathematical guarantee and guideline

ü Adaptive tuning of parameters

ü Selecting Integrators

ü Generalizing to infinite-dimensional sample space

ü Introducing inverse temperature



Discussion

ü Particle Filter

ü Variational method

ü Inverse problem

ü “Estimation of Hydraulic Conductivity from Steady State
Seepage Flow Using Hamiltonian Monte Carlo”-
01/02/2021



For Your Information…

“Remember that using Bayes' Theorem doesn't make you a
Bayesian. Quantifying uncertainty with probability makes
you a Bayesian.” - Michael Betancourt
https://twitter.com/betanalpha/status/8170128606436
35204

This is pinned tweet of Michael Betancourt.

https://twitter.com/betanalpha/status/817012860643635204
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Documents

ü Detail documents on my site

https://kotatakeda.github.io/math/2021/01/03/

hamiltonian-monte-carlo.html

https://kotatakeda.github.io/math/2021/01/03/hamiltonian-monte-carlo.html

