Introduction To Hamiltonian Monte Carlo

Kota Takeda

Department of Mathematics

Kyoto University

- 1. Introduction
- 2. Preliminary
- 3. Hamiltonian Monte Carlo
- 4. Demonstration
- 5. Discussion

1. Introduction

Introduction to today's presentation and Hamiltonian Monte Carlo

<u>Introduction</u>

Almost all parts of this presentation is from

"A Conceptual Introduction to Hamiltonian Monte Carlo", Michael Betancourt .

This is intuitive introduction of Hamiltonian Monte Carlo.

Motivation

Computing expectations with respect to the posterior distribution in Bayesian inference

$$\mathbb{E}_{\pi}[f] = \int_{Q} f(q)\pi(q)dq$$

2. Preliminary

Preparing to constructing Hamiltonian Monte Carlo

Notation

- ✓ Sample space $Q = \mathbb{R}^d$.
- Denote M > 0, if M is symmetric positive definite matrix.
- $N(0, \Sigma)$; for mean zero covariance Σ Gaussian distribution.
- ✓ $q \sim \pi$; q is distributed by π .
- ✓ Use " \equiv " for definition

Monte Carlo Method

Approximate distribution $\pi(q)$ with **large samples**

$$\mathbb{E}_{\pi}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f(q_n)$$

Sampling Problem

Define sample problem we are interested in

How do we make efficient sampling from given target distribution $\pi(q)$?

Markov Chain Monte Carlo: MCMC

Construct Markov chain that converges to target distribution by **Random proposal** and Acceptance

Desired transition kernel $\mathbb{T}(q'|q)$ to satisfy reversibility

$$\pi(q)\mathbb{T}(q'|q) = \pi(q')\mathbb{T}(q|q')$$

Random Walk Metropolis: RWM

One simple implementation of Metropolis-Hasting algorithm

- ✓ Require: target $\pi(q)$
- ✓ proposal covariance $\Sigma > 0$

1. Random proposal given q_n , draw $q_{prop} \sim N(q_n, \Sigma)$

2. Accept

```
accept q_{n+1} = q_{prop} with probability

min\{1, \frac{\pi(q_{prop})}{\pi(q_n)}\}
```

Issue of MCMC

Poor performance with high dimension and complex target distributions

Hamilton Dynamics

Hamilton equation on phase space

- ✓ preserve volume in phase
 space(Liouville's Theorem)
- preserve total energy in phase
 space, which is Hamiltonian
- ✓ time reversal symmetry

dHdpdtdHdpdq

3. Hamiltonian Monte Carlo

Constructing Hamiltonian Monte Carlo

Hamiltonian Monte Carlo: HMC

Q. How do we make efficient sampling from given target distribution $\pi_U(q)$?

A. One approach is using geometric information of target and constructing conservative transition kernel by Hamilton flow.

Information of Gradient

Using geometric information of target density

1. Consider
$$\pi_U(q) = e^{-U(q)}$$
, where $U(q) \equiv -\log(\pi_U(q))$

2. But gradient
$$\frac{dU}{dq}$$
 pulls us the mode of density!

3. \rightarrow Need to introduce momentum p

Expand Sample Space

Expand sample space to phase space,

We can always gain sample q by projection (marginalization).

- 1. Expand to phase space $q \rightarrow (q, p)$ with p
- 2. Choose conditional distribution $\pi_K(p|q)$
- 3. Lift $\pi_U(q)$ to $\pi_H(q,p) \equiv \pi_K(p|q)\pi_U(q)$

Choice of Kinetic Energy

To define conditional distribution of momentum $\pi_K(p|q)$, a user choose kinetic energy. In simple case, let $K(q,p) = \frac{1}{2}p^T M^{-1}p$.

- 1. Choose Kinetic Energy K(q,p)
- 2. Conditional distribution of momentum determined by

$$\pi_K(p|q) \equiv e^{-K(q,p)}$$

<u>Hamiltonian</u>

Hamiltonian H and canonical distribution π_H are defined as below.

1.
$$H(q,p) \equiv K(q,p) + U(q)$$

2. $\pi_H(q,p) \equiv \pi_K(p|q)\pi_U(q) = e^{-H(q,p)}$

Symplectic integrator

Scheme exactly preserving volume

✓ Assume:
$$K(q, p) \equiv \frac{1}{2}p^T M^{-1}p$$

- with Mass matrix M > 0,
- ✓ U(q) is differentiable.
- ✓ Require: step size $\varepsilon > 0$

$$\begin{cases} p_{n+\frac{1}{2}} = p_n - \frac{\varepsilon}{2} \frac{dU}{dq}(q_n) \\ q_{n+1} = q_n + \varepsilon M^{-1} p_{n+\frac{1}{2}} \\ p_{n+1} = p_{n+\frac{1}{2}} - \frac{\varepsilon}{2} \frac{dU}{dq}(q_{n+1}) \end{cases}$$

 $\varphi_{\varepsilon}(q_n, p_n) \equiv q_{n+1}, p_{n+1}$

Numerical Hamilton Flow

Define numerical Hamilton flow by symplectic integrator on previous page and define L times composition

1.
$$\varphi_{\varepsilon}(q_n, p_n) \equiv q_{n+1}, p_{n+1}$$

2. $\varphi_{\varepsilon}^{L} \equiv \varphi_{\varepsilon} \circ \cdots \circ \varphi_{\varepsilon}$ for integer *L*.

HMC Algorithm

Hybrid of deterministic and stochastic transitions

$$\checkmark H(q,p) \equiv \frac{1}{2}p^T M^{-1}p + U(q)$$

✓ Require: $M > 0, L \in \mathbb{N}, \varepsilon > 0$

1. Energy Lift given q_n , draw $p_n \sim N(0, M)$

2. Hamilton flow $q_{prop,} p_{prop} = \varphi_{\varepsilon}^{L}(q_n, p_n)$

3. Accept

accept $q_{n+1} = q_{prop}$ with probability $\min\{1, \exp(H(q_n, p_n) - H(q_{prop}, -p_{prop}))\}$

Conceptual Animation of HMC Algorithm

- 1. Energy Lift
- 2. Hamilton flow
- 3. (Accept)

✓ Sample space $Q = \mathbb{R}^1$ ✓ target $\pi_U(q) = e^{-\frac{1}{2}q^2}, \pi_K(p|q) = e^{-\frac{1}{2}p^2}$ $\Rightarrow H(q,p) = \frac{1}{2}q^2 + \frac{1}{2}p^2$

Advantage of Hamiltonian Monte Carlo

✓ Rich Theoretical Support

effective for wider class of target than non-gradient method

✓ Computational Efficiency

Fast exploration and large acceptance probability

4. Demonstration

Demonstration of efficient Hamiltonian Monte Carlo compared with Random

Walk Metropolis

Strongly Nonlinear Banana Gaussian

Test Target distribution is

Strongly banana gaussian

✓ Sample space $Q = \mathbb{R}^2$

✓ target
$$\pi_U(q_1, q_2) = g \circ \psi_{b=0,1}(q_1, q_2)$$

where

✓
$$g(q_1, q_2) = e^{-\frac{1}{200}q_1^2 - \frac{1}{2}q_2^2}$$

✓ $\psi_b: (q_1, q_2) \mapsto (q_1, q_2 + bq_1^2 - 100b)$

RWM vs HMC after 10 iterations

RWM vs HMC after 100 iterations

RWM vs HMC after 1000 iterations

$\underline{Stats}^{\star}$

RWM	•	Σ	=	2 <i>I</i>
-----	---	---	---	------------

Try Sample	Time*(ms)	Acceptance Probability
10	3.02	0.300
100	25.8	0.260
1000	179	0.288

HMC:
$$\varepsilon = 0.5, L = 10, M = I$$

Try Sample	Time*(ms)	Acceptance Probability
10	7.43	0.900
100	34.3	0.970
1000	474	0.940

*Not guaranteed value, just a reference.

*Time is measured by jupyter magic command `%%time`.

5. Discussion

Discussion about future work or application of Hamiltonian Monte Carlo

Future work

- ✓ Studying mathematical guarantee and guideline
- ✓ Adaptive tuning of parameters
- ✓ Selecting Integrators
- ✓ Generalizing to infinite-dimensional sample space
- ✓ Introducing inverse temperature

Discussion

- ✓ Particle Filter
- \checkmark Variational method
- ✓ Inverse problem
- ✓ "Estimation of Hydraulic Conductivity from Steady State Seepage Flow Using Hamiltonian Monte Carlo"-01/02/2021

For Your Information...

This is pinned tweet of Michael Betancourt.

"Remember that using Bayes' Theorem doesn't make you a Bayesian. Quantifying uncertainty with probability makes you a Bayesian." - Michael Betancourt <u>https://twitter.com/betanalpha/status/8170128606436</u> <u>35204</u>

<u>References</u>

- ✓ "A Conceptual Introduction to Hamiltonian Monte Carlo"
- ✓ "The Geometric Foundations of Hamiltonian Monte Carlo"
- "The Adaptive proposal distribution for Random Walk Metropolis Algorithm" – only for banana Gaussian
- ✓ "Estimation of Hydraulic Conductivity from Steady State Seepage Flow Using Hamiltonian Monte Carlo" - <u>http://soil.en.a.u-</u> <u>tokyo.ac.jp/jsidre/search/PDFs/20/%5B1-52%5D.pdf</u>

<u>Documents</u>

✓ Detail documents on my site

https://kotatakeda.github.io/math/2021/01/03/

hamiltonian-monte-carlo.html